Advertisement

MICER Targeting Vectors for Manipulating the Mouse Genome

  • Chunhong Liu
  • Paul F. Szurek
  • Y. Eugene YuEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 693)

Abstract

The mouse has become an important model for understanding human development, physiology and disease because of its genetic and biological similarity to humans. Desired mouse mutants with precise genetic alterations can now be generated through gene targeting in mouse embryonic stem cells. The rate-limiting factor in a gene-targeting experiment is the time needed for cloning to construct targeting vectors. The establishment of the Mutagenic Insertion and Chromosome Engineering Resource has made available targeting vectors for the insertional mutagenesis of a large number of mouse genes as well as for chromosome engineering throughout the mouse genome. This unique resource has enriched the repertoire of the genetic reagents for targeted manipulation of the mouse genome.

Key words

MICER Gene targeting Targeting vectors Insertional mutagenesis Chromosome engineering 

Notes

Acknowledgments

We thank Annie Pao and Paula Jones for their assistance. Work in the authors’ laboratory is supported by grants from the Louis Sklarow Memorial Fund, the Jerome Lejeune Foundation and the National Institutes of Health (R01HL91519).

References

  1. 1.
    Adams, D. J., Biggs, P. J., Cox, T., Davies, R., van der Weyden, L., Jonkers, J., Smith, J., Plumb, B., Taylor, R., Nishijima, I., Yu, Y., Rogers, J., and Bradley, A. (2004) Mutagenic insertion and chromosome engineering resource (MICER), Nat Genet 36, 867–871.PubMedCrossRefGoogle Scholar
  2. 2.
    Zheng, B., Mills, A. A., and Bradley, A. (1999) A system for rapid generation of coat color-tagged knockouts and defined chromosomal rearrangements in mice, Nucleic Acids Res 27, 2354–2360.PubMedCrossRefGoogle Scholar
  3. 3.
    Auerbach, W., Dunmore, J. H., Fairchild-Huntress, V., Fang, Q., Auerbach, A. B., Huszar, D., and Joyner, A. L. (2000) Establishment and chimera analysis of 129/SvEv- and C57BL/6-derived mouse embryonic stem cell lines, Biotechniques 29, 1024–1028, 1030, 1032.PubMedGoogle Scholar
  4. 4.
    Bradley, A., Zheng, B., and Liu, P. (1998) Thirteen years of manipulating the mouse genome: a personal history, Int J Dev Biol 42, 943–950.PubMedGoogle Scholar
  5. 5.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Analysis and cloning of eukaryotic genomic DNA, in Molecular cloning: a laboratory manual (Nolan, C., Ed.) 2nd ed., Cold Spring Harbor Laboratory Press, Plainview, New York.Google Scholar
  6. 6.
    Li, Z., Szurek, P. F., Jiang, C., Pao, A., Bundy, B., Le, W. D., Bradley, A., and Yu, Y. E. (2005) Neuronal differentiation of NTE-deficient embryonic stem cells, Biochem Biophys Res Commun 330, 1103–1109.PubMedCrossRefGoogle Scholar
  7. 7.
    Mills, A. A., Zheng, B., Wang, X. J., Vogel, H., Roop, D. R., and Bradley, A. (1999) p63 is a p53 homologue required for limb and epi­dermal morphogenesis, Nature 398, 708–713.PubMedCrossRefGoogle Scholar
  8. 8.
    Zheng, B., Vogel, H., Donehower, L. A., and Bradley, A. (2002) Visual genotyping of a coat color tagged p53 mutant mouse line, Cancer Biol Ther 1, 433–435.PubMedGoogle Scholar
  9. 9.
    Cheah, S. S. and Behringer, R. R. (2000) Gene-targeting strategies, Methods Mol Biol 136, 455–463.PubMedGoogle Scholar
  10. 10.
    Hasty, P., Abuin, A., and Bradley, A. (1999) Gene targeting, principles, and practice in mammalian cells, in Gene targeting: a prac­tical approach (Joyner, A. L., Ed.) 2nd ed., pp 1–35, Oxford University Press Inc., New York.Google Scholar
  11. 11.
    Ijuin, T., Yu, Y. E., Mizutani, K., Pao, A., Tateya, S., Tamori, Y., Bradley, A., and Takenawa, T. (2008) Increased insulin action in SKIP heterozygous knockout mice, Mol Cell Biol 28, 5184–5195.PubMedCrossRefGoogle Scholar
  12. 12.
    Cleary, M. A., van Raamsdonk, C. D., Levorse, J., Zheng, B., Bradley, A., and Tilghman, S. M. (2001) Disruption of an imprinted gene cluster by a targeted chromosomal translocation in mice, Nat Genet 29, 78–82.PubMedCrossRefGoogle Scholar
  13. 13.
    Mills, A. A. and Bradley, A. (2001) From mouse to man: generating megabase chro­mosome rearrangements, Trends Genet 17, 331–339.PubMedCrossRefGoogle Scholar
  14. 14.
    Ramirez-Solis, R., Liu, P., and Bradley, A. (1995) Chromosome engineering in mice, Nature 378, 720–724.PubMedCrossRefGoogle Scholar
  15. 15.
    Yu, Y. and Bradley, A. (2001) Engineering chromosomal rearrangements in mice, Nat Rev Genet 2, 780–790.PubMedCrossRefGoogle Scholar
  16. 16.
    Zheng, B., Mills, A. A., and Bradley, A. (2001) Introducing defined chromosomal rearrangements into the mouse genome, Methods 24, 81–94.PubMedCrossRefGoogle Scholar
  17. 17.
    Simpson, E. M., Linder, C. C., Sargent, E. E., Davisson, M. T., Mobraaten, L. E., and Sharp, J. J. (1997) Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice, Nat Genet 16, 19–27.PubMedCrossRefGoogle Scholar
  18. 18.
    Yu, Y. E., Morishima, M., Pao, A., Wang, D. Y., Wen, X. Y., Baldini, A., and Bradley, A. (2006) A deficiency in the region homologous to human 17q21.33-q23.2 causes heart defects in mice, Genetics 173, 297–307.PubMedCrossRefGoogle Scholar
  19. 19.
    Li, Z., Yu, T., Morishima, M., Pao, A., LaDuca, J., Conroy, J., Nowak, N., Matsui, S., Shiraishi, I., and Yu, Y. (2007) Duplication of the entire 22.9-Mb human chromosome 21 syntenic region on mouse chromosome 16 causes cardiovascular and gastrointestinal abnormalities, Hum Mol Genet 16, 1359–1366.PubMedCrossRefGoogle Scholar
  20. 20.
    Lange, U. C., Adams, D. J., Lee, C., Barton, S., Schneider, R., Bradley, A., and Surani, M. A. (2008) Normal germ line establishment in mice carrying a deletion of the Ifitm/Fragilis gene family cluster, Mol Cell Biol 28, 4688–4696.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Genetics Program and Department of Cancer GeneticsRoswell Park Cancer Institute, New York State Center of Excellence in Bioinformatics and Life Sciences BuffaloNew YorkUSA

Personalised recommendations