Hypomorphic Mice

  • Darren J. Baker
Part of the Methods in Molecular Biology book series (MIMB, volume 693)


The use of genetically engineered mice has become a standard approach in order to study the physiological contribution of genes in a variety of life-science disciplines. Classical and conditional gene-targeting methods aimed at generating knock-out mice that lack gene products have been useful, but may be limited in their scope. If the gene of interest is essential for cell viability, little insight can be gained into the in vivo function of these genes. A hypomorphic approach, utilizing many of the same methods employed for traditional gene targeting, allows one to disrupt the function of genes to a lesser degree and bypass the lethality caused by many gene mutations. The purpose of this chapter is to introduce the concepts behind how hypomorphic alleles impede normal genetic function and provide information necessary to construct a targeting vector successfully for use in ES cells to generate ultimately mice with lower than normal amounts of an endogenous protein of interest.

Key words

Hypomorphic alleles Gene targeting Animal models 



I thank Drs. Robin Ricke and Jan van Deursen for helpful suggestions and critical reading of the manuscript.


  1. 1.
    van Deursen, J. (2003) Gene targeting in mouse embryonic stem cells, Methods Mol Biol 209, 145–158.PubMedGoogle Scholar
  2. 2.
    Xu, X. and Fu, X. D. (2005) Conditional knockout mice to study alternative splicing in vivo, Methods 37, 387–392.PubMedCrossRefGoogle Scholar
  3. 3.
    Muller, U. (1999) Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis, Mech Dev 82, 3–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Kuhn, R. and Schwenk, F. (1997) Advances in gene targeting methods, Curr Opin Immunol 9, 183–188.PubMedCrossRefGoogle Scholar
  5. 5.
    Meyers, E. N., Lewandoski, M., and Martin, G. R. (1998) An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination, Nat Genet 18, 136–141.PubMedCrossRefGoogle Scholar
  6. 6.
    Jacks, T., Shih, T. S., Schmitt, E. M., Bronson, R. T., Bernards, A., and Weinberg, R. A. (1994) Tumour predisposition in mice heterozygous for a targeted mutation in Nf1, Nat Genet 7, 353–361.PubMedCrossRefGoogle Scholar
  7. 7.
    van Deursen, J., Ruitenbeek, W., Heerschap, A., Jap, P., ter Laak, H., and Wieringa, B. (1994) Creatine kinase (CK) in skeletal muscle energy metabolism: a study of mouse mutants with graded reduction in muscle CK expression, Proc Natl Acad Sci U S A 91, 9091–9095.PubMedCrossRefGoogle Scholar
  8. 8.
    Trumpp, A., Depew, M. J., Rubenstein, J. L., Bishop, J. M., and Martin, G. R. (1999) Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch, Genes Dev 13, 3136–3148.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang, P. (2008) Transgenic RNA inter­ference in mice, Methods Mol Biol 442, 259–266.PubMedCrossRefGoogle Scholar
  10. 10.
    Baker, D. J., Jeganathan, K. B., Cameron, J. D., Thompson, M., Juneja, S., Kopecka, A., Kumar, R., Jenkins, R. B., de Groen, P. C., Roche, P., and van Deursen, J. M. (2004) BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice, Nat Genet 36, 744–749.PubMedCrossRefGoogle Scholar
  11. 11.
    Bayascas, J. R., Leslie, N. R., Parsons, R., Fleming, S., and Alessi, D. R. (2005) Hypomorphic mutation of PDK1 suppresses tumorigenesis in PTEN(+/−) mice, Curr Biol 15, 1839–1846.PubMedCrossRefGoogle Scholar
  12. 12.
    Trotman, L. C., Niki, M., Dotan, Z. A., Koutcher, J. A., Di Cristofano, A., Xiao, A., Khoo, A. S., Roy-Burman, P., Greenberg, N. M., Van Dyke, T., Cordon-Cardo, C., and Pandolfi, P. P. (2003) Pten dose dictates cancer progression in the prostate, PLoS Biol 1, E59.PubMedCrossRefGoogle Scholar
  13. 13.
    Grisendi, S., Bernardi, R., Rossi, M., Cheng, K., Khandker, L., Manova, K., and Pandolfi, P. P. (2005) Role of nucleophosmin in embryonic development and tumorigenesis, Nature 437, 147–153.PubMedCrossRefGoogle Scholar
  14. 14.
    van Deursen, J., Lovell-Badge, R., Oerlemans, F., Schepens, J., and Wieringa, B. (1991) Modulation of gene activity by consecutive gene targeting of one creatine kinase M allele in mouse embryonic stem cells, Nucleic Acids Res 19, 2637–2643.PubMedCrossRefGoogle Scholar
  15. 15.
    Jeganathan, K., Malureanu, L., Baker, D. J., Abraham, S. C., and van Deursen, J. M. (2007) Bub1 mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis, J Cell Biol, 179(2), 255–267.PubMedCrossRefGoogle Scholar
  16. 16.
    Kist, R., Watson, M., Wang, X., Cairns, P., Miles, C., Reid, D. J., and Peters, H. (2005) Reduction of Pax9 gene dosage in an allelic series of mouse mutants causes hypodontia and oligodontia, Hum Mol Genet 14, 3605–3617.PubMedCrossRefGoogle Scholar
  17. 17.
    Matsumoto, T., Baker, D. J., d’Uscio, L. V., Mozammel, G., Katusic, Z. S., and van Deursen, J. M. (2007) Aging-associated vascular phenotype in mutant mice with low levels of BubR1, Stroke 38, 1050–1056.PubMedCrossRefGoogle Scholar
  18. 18.
    Peng, S., York, J. P., and Zhang, P. (2006) A transgenic approach for RNA interference-based genetic screening in mice, Proc Natl Acad Sci U S A 103, 2252–2256.PubMedCrossRefGoogle Scholar
  19. 19.
    Dawlaty, M. M., Malureanu, L., Jeganathan, K. B., Kao, E., Sustmann, C., Tahk, S., Shuai, K., Grosschedl, R., and van Deursen, J. M. (2008) Resolution of sister centromeres requires RanBP2-mediated SUMOylation of topoisomerase IIalpha, Cell 133, 103–115.PubMedCrossRefGoogle Scholar
  20. 20.
    Dawlaty, M. M., and van Deursen, J. M. (2006) Gene targeting methods for studying nuclear transport factors in mice, Methods 39, 370–378.PubMedCrossRefGoogle Scholar
  21. 21.
    van Deursen, J. and Wieringa, B. (1992) Targeting of the creatine kinase M gene in embryonic stem cells using isogenic and nonisogenic vectors, Nucleic Acids Res 20, 3815–3820.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Darren J. Baker
    • 1
  1. 1.Department of Pediatrics and Adolescent MedicineMayo Clinic College of MedicineRochesterUSA

Personalised recommendations