Generating Conditional Knockout Mice

  • Roland H. Friedel
  • Wolfgang Wurst
  • Benedikt Wefers
  • Ralf Kühn
Part of the Methods in Molecular Biology book series (MIMB, volume 693)


Gene targeting in ES cells is extensively used to generate designed mouse mutants and to study gene function in vivo. Knockout mice that harbor a null allele in their germline provide appropriate genetic models of inherited diseases and often exhibit embryonic or early postnatal lethality. To study gene function in adult mice and in selected cell types, a refined strategy for conditional gene inactivation has been developed that relies on the DNA recombinase Cre and its recognition (loxP) sites. For conditional mutagenesis, a target gene is modified by the insertion of two loxP sites that enable to excise the flanked (floxed) gene segment through Cre-mediated recombination. Conditional mutant mice are obtained by crossing the floxed strain with a Cre transgenic line such that the target gene becomes inactivated in vivo within the expression domain of Cre. A large collection of Cre transgenic lines has been generated over time and can be used in a combinatorial manner to achieve gene inactivation in many different cell types. A growing number of CreERT2 transgenic mice further allows for inducible inactivation of floxed alleles in adult mice upon administration of tamoxifen. This chapter covers the design and construction of loxP flanked alleles and refers to the vectors, ES cells, and mice generated by the European conditional mouse mutagenesis (EUCOMM) project. We further describe the design and use of Cre and CreERT2 transgenic mice and a convenient breeding strategy to raise conditional mutants and controls for phenotype analysis.

Key words

Cre loxP Conditional mutant Mouse mutant ES cells Inducible Tamoxifen 


  1. 1.
    Capecchi, M. R. (1989) The new mouse genetics: altering the genome by gene targeting, Trends Genet 5, 70–76.PubMedCrossRefGoogle Scholar
  2. 2.
    Mak, T. (1998) The Gene Knockout Facts Book, Academic Press, San Diego.Google Scholar
  3. 3.
    Gu, H., Marth, J. D., Orban, P. C., Mossmann, H., and Rajewsky, K. (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting, Science 265, 103–106.PubMedCrossRefGoogle Scholar
  4. 4.
    Rajewsky, K., Gu, H., Kuhn, R., Betz, U. A., Muller, W., Roes, J., and Schwenk, F. (1996) Conditional gene targeting, J Clin Invest 98, 600–603.PubMedCrossRefGoogle Scholar
  5. 5.
    Branda, C. S. and Dymecki, S. M. (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice, Dev Cell 6, 7–28.PubMedCrossRefGoogle Scholar
  6. 6.
    Sauer, B. and McDermott, J. (2004) DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages, Nucleic Acids Res 32, 6086–6095.PubMedCrossRefGoogle Scholar
  7. 7.
    Anastassiadis, K., Fu, J., Patsch, C., Hu, S., Weidlich, S., Duerschke, K., Buchholz, F., Edenhofer, F., and Stewart, A. F. (2009) Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice, Dis Model Mech 2, 508–515.PubMedCrossRefGoogle Scholar
  8. 8.
    Hoess, R. H. and Abremski, K. (1984) Interaction of the bacteriophage P1 recombinase Cre with the recombining site loxP, Proc Natl Acad Sci U S A 81, 1026–1029.PubMedCrossRefGoogle Scholar
  9. 9.
    Abremski, K., Hoess, R., and Sternberg, N. (1983) Studies on the properties of P1 site-specific recombination: evidence for topo­logically unlinked products following recombi­nation, Cell 32, 1301–1311.PubMedCrossRefGoogle Scholar
  10. 10.
    Hoess, R. H., Wierzbicki, A., and Abremski, K. (1986) The role of the loxP spacer region in P1 site-specific recombination, Nucleic Acids Res 14, 2287–2300.PubMedCrossRefGoogle Scholar
  11. 11.
    Indra, A. K., Warot, X., Brocard, J., Bornert, J. M., Xiao, J. H., Chambon, P., and Metzger, D. (1999) Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases, Nucleic Acids Res 27, 4324–4327.PubMedCrossRefGoogle Scholar
  12. 12.
    te Riele, H., Maandag, E. R., and Berns, A. (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs, Proc Natl Acad Sci U S A 89, 5128–5132.PubMedCrossRefGoogle Scholar
  13. 13.
    Kontgen, F., Suss, G., Stewart, C., Steinmetz, M., and Bluethmann, H. (1993) Targeted disruption of the MHC class II Aa gene in C57BL/6 mice, Int Immunol 5, 957–964.PubMedCrossRefGoogle Scholar
  14. 14.
    Pettitt, S. J., Liang, Q., Rairdan, X. Y., Moran, J. L., Prosser, H. M., Beier, D. R., Lloyd, K. C., Bradley, A., and Skarnes, W. C. (2009) Agouti C57BL/6 N embryonic stem cells for mouse genetic resources, Nat Methods 6, 493–495.PubMedCrossRefGoogle Scholar
  15. 15.
    Hitz, C., Wurst, W., and Kuhn, R. (2007) Conditional brain-specific knockdown of MAPK using Cre/loxP regulated RNA interference, Nucleic Acids Res 35, e90.PubMedCrossRefGoogle Scholar
  16. 16.
    Eggan, K., Akutsu, H., Loring, J., Jackson-Grusby, L., Klemm, M., Rideout, W. M., 3rd, Yanagimachi, R., and Jaenisch, R. (2001) Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation, Proc Natl Acad Sci U S A 98, 6209–6214.PubMedCrossRefGoogle Scholar
  17. 17.
    Southon, E. and Tessarollo, L. (2009) Manipulating mouse embryonic stem cells, Methods Mol Biol 530, 165–185.PubMedCrossRefGoogle Scholar
  18. 18.
    Rodriguez, C. I., Buchholz, F., Galloway, J., Sequerra, R., Kasper, J., Ayala, R., Stewart, A. F., and Dymecki, S. M. (2000) High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP, Nat Genet 25, 139–140.PubMedCrossRefGoogle Scholar
  19. 19.
    Testa, G., Schaft, J., van der Hoeven, F., Glaser, S., Anastassiadis, K., Zhang, Y., Hermann, T., Stremmel, W., and Stewart, A. F. (2004) A reliable lacZ expression reporter cassette for multipurpose, knockout-first alleles, Genesis 38, 151–158.PubMedCrossRefGoogle Scholar
  20. 20.
    Schnutgen, F., De-Zolt, S., Van Sloun, P., Hollatz, M., Floss, T., Hansen, J., Altschmied, J., Seisenberger, C., Ghyselinck, N. B., Ruiz, P., Chambon, P., Wurst, W., and von Melchner, H. (2005) Genomewide production of multipurpose alleles for the functional analysis of the mouse genome, Proc Natl Acad Sci U S A 102, 7221–7226.PubMedCrossRefGoogle Scholar
  21. 21.
    Choi, T., Huang, M., Gorman, C., and Jaenisch, R. (1991) A generic intron increases gene expression in transgenic mice, Mol Cell Biol 11, 3070–3074.PubMedGoogle Scholar
  22. 22.
    Pfarr, D. S., Rieser, L. A., Woychik, R. P., Rottman, F. M., Rosenberg, M., and Reff, M. E. (1986) Differential effects of polyadenylation regions on gene expression in mammalian cells, DNA 5, 115–122.PubMedCrossRefGoogle Scholar
  23. 23.
    Le, Y., Gagneten, S., Tombaccini, D., Bethke, B., and Sauer, B. (1999) Nuclear targeting determinants of the phage P1 cre DNA recombinase, Nucleic Acids Res 27, 4703–4709.PubMedCrossRefGoogle Scholar
  24. 24.
    Shimshek, D. R., Kim, J., Hubner, M. R., Spergel, D. J., Buchholz, F., Casanova, E., Stewart, A. F., Seeburg, P. H., and Sprengel, R. (2002) Codon-improved Cre recombinase (iCre) expression in the mouse, Genesis 32, 19–26.PubMedCrossRefGoogle Scholar
  25. 25.
    Parkitna, J. R., Engblom, D., and Schutz, G. (2009) Generation of Cre recombinase-expressing transgenic mice using bacterial artificial chromosomes, Methods Mol Biol 530, 325–342.PubMedCrossRefGoogle Scholar
  26. 26.
    Hentze, M. W. and Kulozik, A. E. (1999) A perfect message: RNA surveillance and nonsense-mediated decay, Cell 96, 307–310.PubMedCrossRefGoogle Scholar
  27. 27.
    Olson, E. N., Arnold, H. H., Rigby, P. W., and Wold, B. J. (1996) Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4, Cell 85, 1–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Lindeberg, J. and Ebendal, T. (1999) Use of an internal ribosome entry site for bicistronic expression of Cre recombinase or rtTA transactivator, Nucleic Acids Res 27, 1552–1554.PubMedCrossRefGoogle Scholar
  29. 29.
    Gorski, J. A. and Jones, K. R. (1999) Efficient bicistronic expression of cre in mammalian cells, Nucleic Acids Res 27, 2059–2061.PubMedCrossRefGoogle Scholar
  30. 30.
    Szymczak, A. L., Workman, C. J., Wang, Y., Vignali, K. M., Dilioglou, S., Vanin, E. F., and Vignali, D. A. (2004) Correction of multi-gene deficiency in vivo using a single “self-cleaving” 2A peptide-based retroviral vector, Nat Biotechnol 22, 589–594.PubMedCrossRefGoogle Scholar
  31. 31.
    Nagy, A., Mar, L., and Watts, G. (2009) Creation and use of a cre recombinase transgenic database, Methods Mol Biol 530, 365–378.PubMedCrossRefGoogle Scholar
  32. 32.
    Kuhn, R., Schwenk, F., Aguet, M., and Rajewsky, K. (1995) Inducible gene targeting in mice, Science 269, 1427–1429.PubMedCrossRefGoogle Scholar
  33. 33.
    Saam, J. R. and Gordon, J. I. (1999) Inducible gene knockouts in the small intestinal and colonic epithelium, J Biol Chem 274, 38071–38082.PubMedCrossRefGoogle Scholar
  34. 34.
    Utomo, A. R., Nikitin, A. Y., and Lee, W. H. (1999) Temporal, spatial, and cell type-specific control of Cre-mediated DNA recombination in transgenic mice, Nat Biotechnol 17, 1091–1096.PubMedCrossRefGoogle Scholar
  35. 35.
    Brooks, A. I., Muhkerjee, B., Panahian, N., Cory-Slechta, D., and Federoff, H. J. (1997) Nerve growth factor somatic mosaicism produced by herpes virus-directed expression of cre recombinase, Nat Biotechnol 15, 57–62.PubMedCrossRefGoogle Scholar
  36. 36.
    Anton, M. and Graham, F. L. (1995) Site-specific recombination mediated by an adenovirus vector expressing the Cre recombinase protein: a molecular switch for control of gene expression, J Virol 69, 4600–4606.PubMedGoogle Scholar
  37. 37.
    Kaspar, B. K., Vissel, B., Bengoechea, T., Crone, S., Randolph-Moore, L., Muller, R., Brandon, E. P., Schaffer, D., Verma, I. M., Lee, K. F., Heinemann, S. F., and Gage, F. H. (2002) Adeno-associated virus effectively mediates conditional gene modification in the brain, Proc Natl Acad Sci U S A 99, 2320–2325.PubMedCrossRefGoogle Scholar
  38. 38.
    Indra, A. K., Li, M., Brocard, J., Warot, X., Bornert, J. M., Gerard, C., Messaddeq, N., Chambon, P., and Metzger, D. (2000) Targeted somatic mutagenesis in mouse epidermis, Horm Res 54, 296–300.PubMedCrossRefGoogle Scholar
  39. 39.
    Feil, S., Valtcheva, N., and Feil, R. (2009) Inducible Cre mice, Methods Mol Biol 530, 343–363.PubMedCrossRefGoogle Scholar
  40. 40.
    Schmidt-Supprian, M. and Rajewsky, K. (2007) Vagaries of conditional gene targeting, Nat Immunol 8, 665–668.PubMedCrossRefGoogle Scholar
  41. 41.
    Vogt, M. A., Chourbaji, S., Brandwein, C., Dormann, C., Sprengel, R., and Gass, P. (2008) Suitability of tamoxifen-induced mutagenesis for behavioral phenotyping, Exp Neurol 211, 25–33.PubMedCrossRefGoogle Scholar
  42. 42.
    Erdmann, G., Schutz, G., and Berger, S. (2007) Inducible gene inactivation in neurons of the adult mouse forebrain, BMC Neurosci 8, 63.PubMedCrossRefGoogle Scholar
  43. 43.
    Kiermayer, C., Conrad, M., Schneider, M., Schmidt, J., and Brielmeier, M. (2007) Optimization of spatiotemporal gene inactivation in mouse heart by oral application of tamoxifen citrate, Genesis 45, 11–16.PubMedCrossRefGoogle Scholar
  44. 44.
    Bruning, J. C., Michael, M. D., Winnay, J. N., Hayashi, T., Horsch, D., Accili, D., Goodyear, L. J., and Kahn, C. R. (1998) A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance, Mol Cell 2, 559–569.PubMedCrossRefGoogle Scholar
  45. 45.
    Kulkarni, R. N., Bruning, J. C., Winnay, J. N., Postic, C., Magnuson, M. A., and Kahn, C. R. (1999) Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes, Cell 96, 329–339.PubMedCrossRefGoogle Scholar
  46. 46.
    Michael, M. D., Kulkarni, R. N., Postic, C., Previs, S. F., Shulman, G. I., Magnuson, M. A., and Kahn, C. R. (2000) Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction, Mol Cell 6, 87–97.PubMedGoogle Scholar
  47. 47.
    Kwan, K. M. (2002) Conditional alleles in mice: practical considerations for tissue-specific knockouts, Genesis 32, 49–62.PubMedCrossRefGoogle Scholar
  48. 48.
    Schwenk, F., Baron, U., and Rajewsky, K. (1995) A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells, Nucleic Acids Res 23, 5080–5081.PubMedCrossRefGoogle Scholar
  49. 49.
    Minichiello, L., Korte, M., Wolfer, D., Kuhn, R., Unsicker, K., Cestari, V., Rossi-Arnaud, C., Lipp, H. P., Bonhoeffer, T., and Klein, R. (1999) Essential role for TrkB receptors in hippocampus-mediated learning, Neuron 24, 401–414.PubMedCrossRefGoogle Scholar
  50. 50.
    Tronche, F., Kellendonk, C., Kretz, O., Gass, P., Anlag, K., Orban, P. C., Bock, R., Klein, R., and Schutz, G. (1999) Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety, Nat Genet 23, 99–103.PubMedCrossRefGoogle Scholar
  51. 51.
    Soriano, P. (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain, Nat Genet 21, 70–71.PubMedCrossRefGoogle Scholar
  52. 52.
    Mao, X., Fujiwara, Y., and Orkin, S. H. (1999) Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice, Proc Natl Acad Sci U S A 96, 5037–5042.PubMedCrossRefGoogle Scholar
  53. 53.
    Kawamoto, S., Niwa, H., Tashiro, F., Sano, S., Kondoh, G., Takeda, J., Tabayashi, K., and Miyazaki, J. (2000) A novel reporter mouse strain that expresses enhanced green fluorescent protein upon Cre-mediated recombination, FEBS Lett 470, 263–268.PubMedCrossRefGoogle Scholar
  54. 54.
    Srinivas, S., Watanabe, T., Lin, C. S., William, C. M., Tanabe, Y., Jessell, T. M., and Costantini, F. (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus, BMC Dev Biol 1, 4.PubMedCrossRefGoogle Scholar
  55. 55.
    Luche, H., Weber, O., Nageswara Rao, T., Blum, C., and Fehling, H. J. (2007) Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies, Eur J Immunol 37, 43–53.PubMedCrossRefGoogle Scholar
  56. 56.
    Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L., and Luo, L. (2007) A global double-fluorescent Cre reporter mouse, Genesis 45, 593–605.PubMedCrossRefGoogle Scholar
  57. 57.
    Lobe, C. G., Koop, K. E., Kreppner, W., Lomeli, H., Gertsenstein, M., and Nagy, A. (1999) Z/AP, a double reporter for cre-mediated recombination, Dev Biol 208, 281–292.PubMedCrossRefGoogle Scholar
  58. 58.
    Novak, A., Guo, C., Yang, W., Nagy, A., and Lobe, C. G. (2000) Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision, Genesis 28, 147–155.PubMedCrossRefGoogle Scholar
  59. 59.
    Seibler, J., Zevnik, B., Kuter-Luks, B., Andreas, S., Kern, H., Hennek, T., Rode, A., Heimann, C., Faust, N., Kauselmann, G., Schoor, M., Jaenisch, R., Rajewsky, K., Kuhn, R., and Schwenk, F. (2003) Rapid generation of inducible mouse mutants, Nucleic Acids Res 31, e12.PubMedCrossRefGoogle Scholar
  60. 60.
    Hameyer, D., Loonstra, A., Eshkind, L., Schmitt, S., Antunes, C., Groen, A., Bindels, E., Jonkers, J., Krimpenfort, P., Meuwissen, R., Rijswijk, L., Bex, A., Berns, A., and Bockamp, E. (2007) Toxicity of ligand-dependent Cre recombinases and generation of a conditional Cre deleter mouse allowing mosaic recombination in peripheral tissues, Physiol Genomics 31, 32–41.PubMedCrossRefGoogle Scholar
  61. 61.
    Santagati, F., Minoux, M., Ren, S. Y., and Rijli, F. M. (2005) Temporal requirement of Hoxa2 in cranial neural crest skeletal morphogenesis, Development 132, 4927–4936.PubMedCrossRefGoogle Scholar
  62. 62.
    Hayashi, S. and McMahon, A. P. (2002) Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse, Dev Biol 244, 305–318.PubMedCrossRefGoogle Scholar
  63. 63.
    Gruber, M., Hu, C. J., Johnson, R. S., Brown, E. J., Keith, B., and Simon, M. C. (2007) Acute postnatal ablation of Hif-2alpha results in anemia, Proc Natl Acad Sci U S A 104, 2301–2306.PubMedCrossRefGoogle Scholar
  64. 64.
    Li, M., Indra, A. K., Warot, X., Brocard, J., Messaddeq, N., Kato, S., Metzger, D., and Chambon, P. (2000) Skin abnormalities generated by temporally controlled RXRalpha mutations in mouse epidermis, Nature 407, 633–636.PubMedCrossRefGoogle Scholar
  65. 65.
    Yajima, I., Belloir, E., Bourgeois, Y., Kumasaka, M., Delmas, V., and Larue, L. (2006) Spatiotemporal gene control by the Cre-ERT2 system in melanocytes, Genesis 44, 34–43.PubMedCrossRefGoogle Scholar
  66. 66.
    Bosenberg, M., Muthusamy, V., Curley, D. P., Wang, Z., Hobbs, C., Nelson, B., Nogueira, C., Horner, J. W., II, Depinho, R., and Chin, L. (2006) Characterization of melanocyte-specific inducible Cre recombinase transgenic mice, Genesis 44, 262–267.PubMedCrossRefGoogle Scholar
  67. 67.
    Imai, T., Chambon, P., and Metzger, D. (2000) Inducible site-specific somatic mutagenesis in mouse hepatocytes, Genesis 26, 147–148.PubMedCrossRefGoogle Scholar
  68. 68.
    Schuler, M., Dierich, A., Chambon, P., and Metzger, D. (2004) Efficient temporally controlled targeted somatic mutagenesis in hepatocytes of the mouse, Genesis 39, 167–172.PubMedCrossRefGoogle Scholar
  69. 69.
    Kuhbandner, S., Brummer, S., Metzger, D., Chambon, P., Hofmann, F., and Feil, R. (2000) Temporally controlled somatic mutagenesis in smooth muscle, Genesis 28, 15–22.PubMedCrossRefGoogle Scholar
  70. 70.
    Schuler, M., Ali, F., Metzger, E., Chambon, P., and Metzger, D. (2005) Temporally controlled targeted somatic mutagenesis in skeletal muscles of the mouse, Genesis 41, 165–170.PubMedCrossRefGoogle Scholar
  71. 71.
    Sohal, D. S., Nghiem, M., Crackower, M. A., Witt, S. A., Kimball, T. R., Tymitz, K. M., Penninger, J. M., and Molkentin, J. D. (2001) Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein, Circ Res 89, 20–25.PubMedCrossRefGoogle Scholar
  72. 72.
    Kim, J. E., Nakashima, K., and de Crombrugghe, B. (2004) Transgenic mice expressing a ligand-inducible cre recombinase in osteoblasts and odontoblasts: a new tool to examine physiology and disease of post­natal bone and tooth, Am J Pathol 165, 1875–1882.PubMedCrossRefGoogle Scholar
  73. 73.
    Chen, M., Lichtler, A. C., Sheu, T. J., Xie, C., Zhang, X., O’Keefe, R. J., and Chen, D. (2007) Generation of a transgenic mouse model with chondrocyte-specific and tamoxifen-inducible expression of Cre recombinase, Genesis 45, 44–50.PubMedCrossRefGoogle Scholar
  74. 74.
    Imai, T., Jiang, M., Chambon, P., and Metzger, D. (2001) Impaired adipogenesis and lipolysis in the mouse upon selective ablation of the retinoid X receptor alpha mediated by a tamoxifen-inducible chimeric Cre recombinase (Cre-ERT2) in adipocytes, Proc Natl Acad Sci U S A 98, 224–228.PubMedCrossRefGoogle Scholar
  75. 75.
    Hirrlinger, P. G., Scheller, A., Braun, C., Hirrlinger, J., and Kirchhoff, F. (2006) Temporal control of gene recombination in astrocytes by transgenic expression of the tamoxifen-inducible DNA recombinase variant CreERT2, Glia 54, 11–20.PubMedCrossRefGoogle Scholar
  76. 76.
    Casper, K. B., Jones, K., and McCarthy, K. D. (2007) Characterization of astrocyte-specific conditional knockouts, Genesis 45, 292–299.PubMedCrossRefGoogle Scholar
  77. 77.
    Mori, T., Tanaka, K., Buffo, A., Wurst, W., Kuhn, R., and Gotz, M. (2006) Inducible gene deletion in astroglia and radial glia – a valuable tool for functional and lineage analysis, Glia 54, 21–34.PubMedCrossRefGoogle Scholar
  78. 78.
    Imayoshi, I., Ohtsuka, T., Metzger, D., Chambon, P., and Kageyama, R. (2006) Temporal regulation of Cre recombinase activity in neural stem cells, Genesis 44, 233–238.PubMedCrossRefGoogle Scholar
  79. 79.
    Leone, D. P., Genoud, S., Atanasoski, S., Grausenburger, R., Berger, P., Metzger, D., Macklin, W. B., Chambon, P., and Suter, U. (2003) Tamoxifen-inducible glia-specific Cre mice for somatic mutagenesis in oligodendrocytes and Schwann cells, Mol Cell Neurosci 22, 430–440.PubMedCrossRefGoogle Scholar
  80. 80.
    Doerflinger, N. H., Macklin, W. B., and Popko, B. (2003) Inducible site-specific recombination in myelinating cells, Genesis 35, 63–72.PubMedCrossRefGoogle Scholar
  81. 81.
    Gu, X., Yan, Y., Li, H., He, D., Pleasure, S. J., and Zhao, C. (2009) Characterization of the Frizzled10-CreER transgenic mouse: an inducible Cre line for the study of Cajal-Retzius cell development, Genesis 47, 210–216.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhao, J., Nassar, M. A., Gavazzi, I., and Wood, J. N. (2006) Tamoxifen-inducible NaV1.8-CreERT2 recombinase activity in nociceptive neurons of dorsal root ganglia, Genesis 44, 364–371.PubMedCrossRefGoogle Scholar
  83. 83.
    el Marjou, F., Janssen, K. P., Chang, B. H., Li, M., Hindie, V., Chan, L., Louvard, D., Chambon, P., Metzger, D., and Robine, S. (2004) Tissue-specific and inducible Cre-mediated recombination in the gut epithelium, Genesis 39, 186–193.PubMedCrossRefGoogle Scholar
  84. 84.
    Lantinga-van Leeuwen, I. S., Leonhard, W. N., van de Wal, A., Breuning, M. H., Verbeek, S., de Heer, E., and Peters, D. J. (2006) Transgenic mice expressing tamoxifen-inducible Cre for somatic gene modification in renal epithelial cells, Genesis 44, 225–232.PubMedCrossRefGoogle Scholar
  85. 85.
    Wen, F., Cecena, G., Munoz-Ritchie, V., Fuchs, E., Chambon, P., and Oshima, R. G. (2003) Expression of conditional cre recom­binase in epithelial tissues of transgenic mice, Genesis 35, 100–106.PubMedCrossRefGoogle Scholar
  86. 86.
    Boyle, S., Misfeldt, A., Chandler, K. J., Deal, K. K., Southard-Smith, E. M., Mortlock, D. P., Baldwin, H. S., and de Caestecker, M. (2008) Fate mapping using Cited1-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia, Dev Biol 313, 234–245.PubMedCrossRefGoogle Scholar
  87. 87.
    Forde, A., Constien, R., Grone, H. J., Hammerling, G., and Arnold, B. (2002) Temporal Cre-mediated recombination exclusively in endothelial cells using Tie2 regulatory elements, Genesis 33, 191–197.PubMedCrossRefGoogle Scholar
  88. 88.
    Monvoisin, A., Alva, J. A., Hofmann, J. J., Zovein, A. C., Lane, T. F., and Iruela-Arispe, M. L. (2006) VE-cadherin-CreERT2 transgenic mouse: a model for inducible recom­bination in the endothelium, Dev Dyn 235, 3413–3422.PubMedCrossRefGoogle Scholar
  89. 89.
    Claxton, S., Kostourou, V., Jadeja, S., Chambon, P., Hodivala-Dilke, K., and Fruttiger, M. (2008) Efficient, inducible Cre-recombinase activation in vascular endothelium, Genesis 46, 74–80.PubMedCrossRefGoogle Scholar
  90. 90.
    Qiu, H. Y., Guo, C., Cheng, X. W., Huang, Y., Xiong, Z. Q., and Ding, Y. Q. (2008) Pitx3-CreER mice showing restricted Cre expression in developing ocular lens and skeletal muscles, Genesis 46, 324–328.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Roland H. Friedel
    • 1
  • Wolfgang Wurst
    • 2
    • 3
  • Benedikt Wefers
    • 2
  • Ralf Kühn
    • 2
  1. 1.Mount Sinai School of MedicineNew YorkUSA
  2. 2.Institute of Developmental GeneticsHelmholtz Center Munich – German Research Center for Environmental HealthNeuherberg/MunichGermany
  3. 3.Molecular NeurogeneticsMax-Planck-Institute of PsychiatryMunichGermany

Personalised recommendations