Skip to main content

FRET-Based Biosensors for the Detection and Quantification of AI-2 Class of Quorum Sensing Compounds

  • Protocol
  • First Online:
Quorum Sensing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 692))

Abstract

Intercellular small molecular weight signaling molecules modulate a variety of biological functions in bacteria. One of the more complex behaviors mediated by intercellular signaling molecules is the suite of activities regulated by quorum sensing molecules. These molecules mediate a variety of population-dependent responses, including the expression of genes that regulate bioluminescence, type III secretion, siderophore production, colony morphology, biofilm formation, and metalloprotease production. Given their central role in regulating these responses, the detection and quantification of QS molecules has important practical implications. Until recently, the detection of QS molecules from Gram-negative bacteria has relied primarily on bacterial reporter systems. These bioassays though immensely useful are subject to interference by compounds that affect bacterial growth and metabolism. In addition, the reporter response is highly dependent on culture age and cell population density. To overcome such limitations, we developed an in vitro protein-based assay system for the rapid detection and quantification of the furanosyl borate diester (BAI-2) subclass of autoinducer-2 (AI-2) QS molecules. The biosensor is based on the interaction of BAI-2 with the Vibrio harveyi QS receptor LuxP. Conformation changes associated with BAI-2 binding to the LuxP receptor change the orientation of cyan and yellow variants of GFP (CFP and YFP) fused the N- and C-termini, respectively, of the LuxP receptor. LuxP-BAI2 binding induces changes in fluorescence resonance energy transfer (FRET) between CFP and YFP, whose magnitude of change is ligand concentration dependent. A set of ligand-insensitive LuxP-mutant FRET protein sensor was also developed for use as control biosensors. The FRET-based BAI-2 biosensor responds selectively to both synthetic and biologically derived BAI-2compounds. This report describes the use of the LuxP-FRET biosensor for the detection and quantification of BAI-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lilley, B. N., and Bassler, B. L. (2000) Regulation of quorum sensing in Vibrio harveyi by LuxO and sigma-54, Mol Microbiol 36, 940.

    Article  PubMed  CAS  Google Scholar 

  2. Bassler, B. L., Wright, M., Showalter, R. E., and Silverman, M. R. (1993) Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence, Mol Microbiol 9, 773–786.

    Article  PubMed  CAS  Google Scholar 

  3. Henke, J. M., and Bassler, B. L. (2004) Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus, J Bacteriol 186, 3794.

    Article  PubMed  CAS  Google Scholar 

  4. Mok, K. C., Wingreen, N. S., and Bassler, B. L. (2003) Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression, EMBO J 22, 870–881.

    Article  PubMed  CAS  Google Scholar 

  5. DeKeersmaecker, S. C. J., and Vanderleyden, J. (2003) Constraints on detection of autoinducer-2 (AI-2) signalling molecules using Vibrio harveyi as a reporter, Microbiology 149, 1953–1956.

    Article  PubMed  CAS  Google Scholar 

  6. Turovskiy, Y., and Chikindas, M. L. (2006) Autoinducer-2 bioassay is a qualitative, not quantitative method influenced by glucose, J Microbiol Methods 66, 407–503.

    Article  Google Scholar 

  7. de Lorimier, R. M., Smith, J. J., Dwyer, M. A., Looger, L. L., Sali, K. M., Paavola, C. D., Rizk, S. S., Sadigov, S., Conrad, D. W., Loew, L., and Hellinga, H. W. (2002) Construction of a fluorescent biosensor family, Protein Sci 11, 2655–2675.

    Article  PubMed  Google Scholar 

  8. Felder, C. B., Graul, R. C., Lee, A. Y., Merkle, H. P., and Sadee, W. (1999) The Venus flytrap of periplasmic binding proteins: an ancient protein module present in multiple drug receptors, AAPS PharmSci 1, E2.

    Article  PubMed  CAS  Google Scholar 

  9. Rajamani, S., Zhu, J., Pei, D., and Sayre, R. (2007) A LuxP-FRET-based reporter for the detection and quantification of AI-2 bacterial quorum-sensing signal compounds, Biochemistry 46, 3990–3997.

    Article  PubMed  CAS  Google Scholar 

  10. Fehr, M., Frommer, W. B., and Lalonde, S. (2002) Visualization of maltose uptake in living yeast cells by fluorescent nanosensors, Proc Natl Acad Sci USA 99, 9846–9851.

    Article  PubMed  CAS  Google Scholar 

  11. Fehr, M., Lalonde, S., Lager, I., Wolff, M. W., and Frommer, W. B. (2003) In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors, J Biol Chem 278, 19127–19133.

    Article  PubMed  CAS  Google Scholar 

  12. Shilton, B. H., Flocco, M. M., Nilsson, M., and Mowbray, S. L. (1996) Conformational changes of three periplasmic receptors for bacterial chemotaxis and transport: the maltose-, glucose/galactose- and ribose-binding proteins, J Mol Biol 264, 350–363.

    Article  PubMed  CAS  Google Scholar 

  13. Zukin, R. S., Hartig, P. R., and Koshland, D. E., Jr. (1979) Effect of an induced conformational change on the physical properties of two chemotactic receptor molecules, Biochemistry 18, 5599–5605.

    Article  PubMed  CAS  Google Scholar 

  14. Zukin, R. S., Hartig, P. R., and Koshland, D. E., Jr. (1977) Use of a distant reporter group as evidence for a conformational change in a sensory receptor, Proc Natl Acad Sci USA 74, 1932–1936.

    Article  PubMed  CAS  Google Scholar 

  15. Bassler, B. L., Wright, M., and Silverman, M. R. (1994) Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway, Mol Microbiol 13, 273–286.

    Article  PubMed  CAS  Google Scholar 

  16. Semmelhack, M. F., Campagna, S. R., Federle, M. J., and Bassler, B. L. (2005) An expeditious synthesis of DPD and boron binding studies, Org Lett 7, 569–572.

    Article  PubMed  CAS  Google Scholar 

  17. Bennett, A., Rowe, R. I., Soch, N., and Eckhert, C. D. (1999) Boron stimulates yeast (Saccharomyces cerevisiae) growth, J Nutr 129, 2236–2238.

    PubMed  CAS  Google Scholar 

  18. Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K., and Miyawaki, A. (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications, Nat Biotechnol 20, 87–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Sayre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rajamani, S., Sayre, R. (2011). FRET-Based Biosensors for the Detection and Quantification of AI-2 Class of Quorum Sensing Compounds. In: Rumbaugh, K. (eds) Quorum Sensing. Methods in Molecular Biology, vol 692. Humana Press. https://doi.org/10.1007/978-1-60761-971-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-971-0_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-970-3

  • Online ISBN: 978-1-60761-971-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics