Analysis of Glycosaminoglycans in Stem Cell Glycomics

  • Boyangzi Li
  • Haiying Liu
  • Zhenqing Zhang
  • Hope E. Stansfield
  • Jonathan S. Dordick
  • Robert J. Linhardt
Part of the Methods in Molecular Biology book series (MIMB, volume 690)


Glycosaminoglycans (GAGs) play a critical role in the binding and activation of growth factors in cell signal transduction required for biological development. A glycomics approach can be used to examine GAG content, composition, and structure in stem cells in order to characterize their general differentiation. Specifically, this method may be used to evaluate chondrogenic differentiations by profiling for the GAG content of the differentiated cells. Here, embryonic-like teratocarcinoma cells, NCCIT, a developmentally pluripotent cell line, were used as a model for establishing GAG glycomic methods, but will be easily transferrable to embryonic stem cell cultures.

Key words

Glycosaminoglycans NCCIT cells Chondroitin sulfate Dermatan sulfate Heparin Heparan sulfate Purification Enzymatic digestion Disaccharide analysis LC-MS 



Our laboratory acknowledges generous support from the New York State Department of Health and the Empire State Stem Cell Board in the form of grant number N08G-264.


  1. 1.
    Raman, R., Raguram, S., Venkataraman, G., Paulson, J. C., and Sasisekharan, R. (2005) Glycomics: an integrated systems approach to structure-function relationships of glycans. Nat. Methods 2, 817–824.PubMedCrossRefGoogle Scholar
  2. 2.
    Zhang, F., Zhang, Z., Thistle, R., McKeen, L., Hosoyama, S., Toida, T., et al. (2009) Structural characterization of glycosaminoglycans from zebrafish in different ages. Glycoconj. J. 26, 211–218.PubMedCrossRefGoogle Scholar
  3. 3.
    Park, Y., Yu, G., Gunay, N. S., and Linhardt, R. J. (1999) Purification and characterization of heparan sulphate proteoglycan from bovine brain. Biochem. J. 344(Pt 3), 723–730.PubMedCrossRefGoogle Scholar
  4. 4.
    Warda, M., Toida, T., Zhang, F., Sun, P., Munoz, E., Xie, J., et al. (2006) Isolation and characterization of heparan sulfate from various murine tissues. Glycoconj. J. 23, 555–563.PubMedCrossRefGoogle Scholar
  5. 5.
    Nairn, A. V., Kinoshita-Toyoda, A., Toyoda, H., Xie, J., Harris, K., Dalton, S., et al. (2007) Glycomics of proteoglycan biosynthesis in murine embryonic stem cell differentiation. J. Proteome Res. 6, 4374–4387.PubMedCrossRefGoogle Scholar
  6. 6.
    Linhardt, R. J., and Toida, T. (2004) Role of glycosaminoglycans in cellular communication. Acc. Chem. Res. 37, 431–438.PubMedCrossRefGoogle Scholar
  7. 7.
    Linhardt, R. J. (2003) 2003 Claude S. Hudson Award address in carbohydrate chemistry. Heparin: structure and activity. J. Med. Chem. 46, 2551–2564.PubMedCrossRefGoogle Scholar
  8. 8.
    Johnson, Z., Proudfoot, A. E., and Handel, T. M. (2005) Interaction of chemokines and glycosaminoglycans: a new twist in the regulation of chemokine function with opportunities for therapeutic intervention. Cytokine Growth Factor Rev. 16, 625–636.PubMedCrossRefGoogle Scholar
  9. 9.
    Capila, I., and Linhardt, R. J. (2002) Heparin-protein interactions. Angew. Chem. Int. Ed. Engl. 41, 390–412.CrossRefGoogle Scholar
  10. 10.
    Beenken, A., and Mohammadi, M. (2009) The FGF family: biology, pathophysiology and therapy. Nat. Rev. Drug Discov. 8, 235–253.PubMedCrossRefGoogle Scholar
  11. 11.
    Hoffman, L. M., and Carpenter, M. K. (2005) Characterization and culture of human embryonic stem cells. Nat. Biotechnol. 23, 699–708.PubMedCrossRefGoogle Scholar
  12. 12.
    Giacomini, M., Baylis, F., and Robert, J. (2007) Banking on it: public policy and the ethics of stem cell research and development. Soc. Sci. Med. 65, 1490–1500.PubMedCrossRefGoogle Scholar
  13. 13.
    Uygun, B. E., Stojsih, S., and Matthew, H. (2009) Effects of immobilized glycosaminoglycans influence proliferation and differentiation of mesenchymal stem cells. Tissue Eng. Part A 15(11), 3499–3512.PubMedCrossRefGoogle Scholar
  14. 14.
    Kumarasuriyar, A., Murali, S., Nurcombe, V., and Cool, S. M. (2009) Glycosaminoglycan composition changes with MG-63 osteosarcoma osteogenesis in vitro and induces human mesenchymal stem cell aggregation. J. Cell Physiol. 218, 501–511.PubMedCrossRefGoogle Scholar
  15. 15.
    Dombrowski, C., Song, S. J., Chuan, P., Lim, X., Susanto, E., Sawyer, A. A., et al. (2009) Heparan sulfate mediates the proliferation and differentiation of rat mesenchymal stem cells. Stem Cells Dev. 18, 661–670.PubMedCrossRefGoogle Scholar
  16. 16.
    Carney, S. L., and Muir, H. (1988) The structure and function of cartilage proteoglycans. Physiol. Rev. 68, 858–909.PubMedGoogle Scholar
  17. 17.
    Poole, A. R. (1986) Proteoglycans in health and disease: structures and functions. Biochem. J. 236, 1–14.PubMedGoogle Scholar
  18. 18.
    Bayliss, M. T., Osborne, D., Woodhouse, S., and Davidson, C. (1999) Sulfation of chondroitin sulfate in human articular cartilage. The effect of age, topographical position, and zone of cartilage on tissue composition. J. Biol. Chem. 274(22), 15892–15900.PubMedCrossRefGoogle Scholar
  19. 19.
    Rizkalla, G., Reigner, A., Bogoch, E., and Poole, A. R. (1992) Studies of the articular cartilage proteoglycan aggrecan in health and osteoarthritis. Evidence for molecular heterogeneity and extensive molecular changes in disease. J. Clin. Invest. 90, 2268–2277.PubMedCrossRefGoogle Scholar
  20. 20.
    Plaas, A. H., Wong-Palms, S., Roughley, P. J. Midura, R. J., and Hascall, V. C. (1997) Chemical and immunological assay of the nonreducing terminal residues of chondroitin sulfate from human aggrecan. J. Biol. Chem. 272, 20604–20610.CrossRefGoogle Scholar
  21. 21.
    Hitchcock, A. M., Yates, K. E., Shortkroff, S., Costello, C. E., and Zaia, J. (2007) Optimized extraction of glycosaminoglycans from normal and osteoarthritic cartilage for glycomics profiling. Glycobiology 17(1), 25–35.PubMedCrossRefGoogle Scholar
  22. 22.
    Pervin, A., Gallo, C., Jandik, K. A., Han, X.-J., and Linhardt, R. J. (1995) Preparation and structural characterization of large heparin-derived oligosaccharides. Glycobiology 5, 83–95.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang, F., Sun, P., Munoz, E., Chi, L., Sakai, S., Toida, T., et al. (2006) Microscale isolation and analysis of heparin from plasma using an anion-exchange spin column. Anal. Biochem. 353, 284–286.PubMedCrossRefGoogle Scholar
  24. 24.
    Edens, R. E., Al-Hakim, A., Weiler, J. M., Rethwisch, D. G., Fareed, J., and Linhardt, R. J. (1992) Gradient polyacrylamide gel electrophoresis for determination of the molecular weights of heparin preparations and low-molecular-weight heparin derivatives, J. Pharm. Sci. 81, 823–827.PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang, Z., Park, Y., Kemp, M. M., Zhao, W., Im, A. R., Shaya, D., et al. (2009) Liquid chromatography-mass spectrometry to study chondroitin lyase action pattern. Anal. Biochem. 385, 57–64.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang, Z., Xie, J., Liu, H., Liu, J., and Linhardt, R. J. (2009) Quantification of heparan sulfate disaccharides using ion-pairing reversed-phase microflow high-performance liquid chromatography with electrospray ionization trap mass spectrometry. Anal. Chem. 81, 4349–4355.PubMedCrossRefGoogle Scholar
  27. 27.
    Teshima, S., Shimosato, Y., Hirohashi, S., Tome, Y., Hayashi, I., Kanazawa, H., Kakizoe, T. (1988) Four new human germ cell tumor cell lines. Lab Invest. 59, 328–336.Google Scholar
  28. 28.
    Damjanov, I., Horvat, B., Gibas, Z. (1993) Retinoic acid-induced differentiation of the developmentally pluripotent human germ cell tumor-derived cell line, NCCIT. Lab Invest. 68, 220–232.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Boyangzi Li
    • 1
  • Haiying Liu
    • 2
  • Zhenqing Zhang
    • 1
  • Hope E. Stansfield
    • 3
  • Jonathan S. Dordick
    • 4
  • Robert J. Linhardt
    • 5
  1. 1.Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  2. 2.Department of Biology, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  3. 3.Departments of Chemistry and Chemical Biology and Biology, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  4. 4.Departments of Biology and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  5. 5.Department of Chemistry and Chemical Biology and Department of Biology and Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations