Skip to main content

Neurophenotyping of Adult Zebrafish Using the Light/Dark Box Paradigm

  • Protocol
  • First Online:
Zebrafish Neurobehavioral Protocols

Abstract

The light/dark box test, traditionally used to quantify rodent anxiety-like behavior, has recently been applied to the adult zebrafish (Danio rerio). Utilizing the fish’s scototaxis (aversion to bright areas and natural preference for the dark), this paradigm can be used to assess levels of anxiety in adult zebrafish. The light/dark box is a simple and time-efficient one-trial test that does not require pre-training the animals. Importantly, this novelty-based paradigm may also represent a useful tool for studying the pharmacological modulation of zebrafish behavior. Summarizing the experience with this model in several laboratories, here we outline a protocol for the neurophenoptyping of zebrafish anxiety-like behavior using the light/dark paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Egan, R.J. et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav. Brain Res. 205(1), 38–44 (2009).

    Article  PubMed  CAS  Google Scholar 

  2. Stewart, A. et al. The developing utility of zebrafish in modeling neurobehavioral disorders. Int. J. Comp. Psychol. 23(1), 104–121 (2010).

    Google Scholar 

  3. Levin, E.D., Bencan, Z., & Cerutti, D.T. Anxiolytic effects of nicotine in zebrafish. Physiol. Behav. 90(1), 54–58 (2007).

    Article  PubMed  CAS  Google Scholar 

  4. Gerlai, R. et al. Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol. Biochem. Behav. 67(4), 773–782 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. Wong, K. et al. Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behav. Brain Res. 208(2), 450–457 (2010).

    Article  PubMed  CAS  Google Scholar 

  6. Sackerman, J. et al. Zebrafish behavior in novel environments: effects of acute exposure to anxiolytic compounds and choice of Danio rerio line. Int. J. Comp. Psychol. 23, 43–61 (2010).

    PubMed  Google Scholar 

  7. Blaser, R. & Gerlai, R. Behavioral phenotyping in zebrafish: comparison of three behavioral quantification methods. Behav. Res. Methods. 38(3), 456–469 (2006).

    Article  PubMed  Google Scholar 

  8. Bourin, M. & Hascoet, M. The mouse light/dark box test. Eur. J. Pharmacol. 463(1–3), 55–65 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. Hascoet, M., Bourin, M., & Dhonnchadha, B.A. The mouse light-dark paradigm: a review. Prog. Neuropsychopharmacol. Biol. Psychiatry. 25(1), 141–166 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. Fraser, L.M. et al. Measuring anxiety- and locomotion-related behaviours in mice: a new way of using old tests. Psychopharmacology (Berlin), 211(1), 99–112 (2010).

    Google Scholar 

  11. Shimada, T. et al. The modified light/dark transition test in mice: evaluation of classic and putative anxiolytic and anxiogenic drugs. Gen. Pharmacol. 26(1), 205–210 (1995).

    Article  PubMed  CAS  Google Scholar 

  12. Blaser, R.E., Chadwick, L., & McGinnis, G.C. Behavioral measures of anxiety in zebrafish (Danio rerio). Behav. Brain Res. 208(1), 56–62 (2010).

    Article  PubMed  CAS  Google Scholar 

  13. Maximino, C. et al. A comparative analysis of the preference for dark environments in five teleosts. Int. J. Comp. Psychol. 20, 351–367 (2007).

    Google Scholar 

  14. Grossman, L. et al. Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav. Brain Res. 214(2), 277–284 (2010).

    Google Scholar 

  15. Maximino, C. et al. Scototaxis as anxiety-like behavior in fish. Nat. Protoc. 5(2), 209–216 (2010).

    Article  PubMed  CAS  Google Scholar 

  16. Maximino, C. et al. Parametric analyses of anxiety in zebrafish scototaxis. Behav. Brain Res. 210(1), 1–7 (2010).

    Article  PubMed  Google Scholar 

  17. Serra, E.L., Medalha, C.C., & Mattioli, R. Natural preference of zebrafish (Danio rerio) for a dark environment. Braz. J. Med. Biol. Res. 32(12), 1551–1553 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. Malmberg-Aiello, P. et al. Mouse light/dark box test reveals anxiogenic-like effects by activation of histamine H1 receptors. Pharmacol. Biochem. Behav. 71(1–2), 313–318 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. Shin, J.T. & Fishman, M.C. From Zebrafish to human: modular medical models. Annu. Rev. Genomics Hum. Genet. 3, 311–340 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. Westerfield, M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio), 5th ed. (University of Oregon Press, Eugene, 2007).

    Google Scholar 

  21. Takao, K. & Miyakawa, T. Light/dark transition test for mice. J Vis Exp. 1, 104 (2006).

    PubMed  Google Scholar 

  22. Prior, H. & Sachser, N. Effect of enriched housing environment on the behaviour of young male and female mice in four exploratory tasks. J. Exp. Amin. Sci. 37, 57–68 (1994).

    Google Scholar 

  23. Chapillon, P. et al. Rearing environmental enrichment in two inbred strains of mice: 1. Effects on emotional reactivity. Behav. Genet. 29(1), 41–46 (1999).

    Article  PubMed  CAS  Google Scholar 

  24. Roy, V. et al. Environmental enrichment in BALB/c mice: effects in classical tests of anxiety and exposure to a predatory odor. Physiol. Behav. 74(3), 313–320 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. Neuhauss, S.C. Behavioral genetic approaches to visual system development and function in zebrafish. J. Neurobiol. 54(1), 148–160 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. Mueller, K.P. & Neuhauss, S.C. Behavioral neurobiology: how larval fish orient towards the light. Curr. Biol. 20(4), R159–R161 (2010).

    Article  PubMed  CAS  Google Scholar 

  27. MacPhail, R.C. et al. Locomotion in larval zebrafish: influence of time of day, lighting and ethanol. Neurotoxicology 30(1), 52–58 (2009).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by Tulane University Intramural funds, Provost’s Scholarly Enrichment Fund, Newcomb Fellows Grant, LA Board of Regents Pfund and NARSAD YI awards, Zebrafish Neuroscience Research Consortium (ZNRC), as well as CAPES/Brazil.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Stewart, A. et al. (2011). Neurophenotyping of Adult Zebrafish Using the Light/Dark Box Paradigm. In: Kalueff, A., Cachat, J. (eds) Zebrafish Neurobehavioral Protocols. Neuromethods, vol 51. Humana Press. https://doi.org/10.1007/978-1-60761-953-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-953-6_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-952-9

  • Online ISBN: 978-1-60761-953-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics