Skip to main content

Quantitation of MicroRNAs by Real-Time RT-qPCR

Part of the Methods in Molecular Biology book series (MIMB,volume 687)

Abstract

MicroRNAs (miRNAs) are ∼22 nucleotide regulatory RNA molecules that play important roles in controlling developmental and physiological processes in animals and plants. Measuring the level of miRNA expression is a critical step in methods that study the regulation of biological functions and that use miRNA profiles as diagnostic markers for cancer and other diseases. Even though the quantitation of these small miRNA molecules by RT-qPCR is challenging because of their short length and sequence similarity, a number of quantitative RT-qPCR-based miRNA quantitation methods have been introduced since 2004. The most commonly used methods are stem-loop reverse transcription (RT)-based TaqMan® MicroRNA assays and arrays. The high sensitivity and specificity, large dynamic range, and simple work flow of TaqMan® MicroRNA assays and arrays have made TaqMan analysis the method of choice for miRNA expression profiling and follow-up validation. Other methods such as poly (A) tailing-based and direct RT-based SYBR miRNA assays are also discussed in this chapter.

Key words

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
EUR   44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   152.96
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–54.

    CrossRef  PubMed  CAS  Google Scholar 

  2. Wightman, B., Ha, I., and Ruvkun, G. (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–62.

    CrossRef  PubMed  CAS  Google Scholar 

  3. Ruvkun, G. (2001) Molecular biology. Glimpses of a tiny RNA world. Science 294, 797–9.

    CrossRef  PubMed  CAS  Google Scholar 

  4. Bartel, D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–97.

    CrossRef  PubMed  CAS  Google Scholar 

  5. Griffiths-Jones, S., Saini, H.K., van Dongen, S., and Enright, A.J. (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36, D154–8.

    CrossRef  PubMed  CAS  Google Scholar 

  6. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001) Identification of novel genes coding for small expressed RNAs. Science 294, 853–8.

    CrossRef  PubMed  CAS  Google Scholar 

  7. Lau, N.C., Lim, L.P., Weinstein, E.G., and Bartel, D.P. (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–62.

    CrossRef  PubMed  CAS  Google Scholar 

  8. Pillai, R.S., Bhattacharyya, S.N., Artus, C.G., Zoller, T., Cougot, N., Basyuk, E., Bertrand, E., and Filipowicz, W. (2005) Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309, 1573–6.

    CrossRef  PubMed  CAS  Google Scholar 

  9. Orom, U.A., Nielsen, F.C., and Lund, A.H. (2008) MicroRNA-10a binds the 5′-UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30, 460–71.

    CrossRef  PubMed  Google Scholar 

  10. Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20.

    CrossRef  PubMed  CAS  Google Scholar 

  11. Brennecke, J., Stark, A., Russell, R.B., and Cohen, S.M. (2005) Principles of microRNA/target recognition. PLoS Biol 3, e85.

    CrossRef  PubMed  Google Scholar 

  12. Xie, X., Lu, J., Kulbokas, E.J., Golub, T.R., Mootha, V., Lindblad-Toh, K., Lander, E.S., and Kellis, M. (2005) Systematic discovery of regulatory motifs in human promoters and 3′UTRs by comparison of several mammals. Nature 434, 338–45.

    CrossRef  PubMed  CAS  Google Scholar 

  13. Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S., and Johnson, J.M. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–73.

    CrossRef  PubMed  CAS  Google Scholar 

  14. Giraldez, A.J., Mishima, Y., Rihel, J., Grocock, R.J., Van Dongen, S., Inoue, K., Enright, A.J., and Schier, A.F. (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–9.

    CrossRef  PubMed  CAS  Google Scholar 

  15. Makeyev, E.V. and Maniatis, T. (2008) Multilevel regulation of gene expression by microRNAs. Science 319, 1789–90.

    CrossRef  PubMed  CAS  Google Scholar 

  16. Zhao, Y. and Srivastava, D. (2007) A developmental view of microRNA function. Trends Biochem Sci 32, 189–97.

    CrossRef  PubMed  CAS  Google Scholar 

  17. Visvanathan, J., Lee, S., Lee, B., Lee, J.W., and Lee, S.K. (2007) The microRNA miR-124 antagonizes the ... pathway during embryonic CNS development. Genes Dev 21, 744–9.

    CrossRef  PubMed  CAS  Google Scholar 

  18. Conaco, C., Otto, S., Han, J.J., and Mandel, G. (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 103, 2422–7.

    CrossRef  PubMed  CAS  Google Scholar 

  19. Makeyev, E.V., Zhang, J., Carrasco, M.A., and Maniatis, T. (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27, 435–48.

    CrossRef  PubMed  CAS  Google Scholar 

  20. Boutz, P.L., Chawla, G., Stoilov, P., and Black, D.L. (2007) MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev 21, 71–84.

    CrossRef  PubMed  CAS  Google Scholar 

  21. Edwards, R.H., Marquitz, A.R., and Raab-Traub, N. (2008) Epstein-Barr virus BART miRNAs are produced from a large intron prior to splicing. J Virol 82, 9094–106.

    CrossRef  PubMed  CAS  Google Scholar 

  22. Zhang, R., Wang, Y.Q., and Su, B. (2008) Molecular evolution of a primate-specific microRNA family. Mol Biol Evol 25, 1493–502.

    CrossRef  PubMed  CAS  Google Scholar 

  23. Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., Brownstein, M.J., Tuschl, T., and Margalit, H. (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33, 2697–706.

    CrossRef  PubMed  CAS  Google Scholar 

  24. Gaur, A., Jewell, D.A., Liang, Y., Ridzon, D., Moore, J.H., Chen, C., Ambros, V.R., and Israel, M.A. (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67, 2456–68.

    CrossRef  PubMed  CAS  Google Scholar 

  25. Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A.O., Landthaler, M., et al. (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–14.

    CrossRef  PubMed  CAS  Google Scholar 

  26. Rosenfeld, N., Aharonov, R., Meiri, E., Rosenwald, S., Spector, Y., Zepeniuk, M., Benjamin, H., Shabes, N., Tabak, S., Levy, A., et al. (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26, 462–9.

    CrossRef  PubMed  CAS  Google Scholar 

  27. Chen, C., Ridzon, D., Lee, C.T., Blake, J., Sun, Y., and Strauss, W.M. (2007) Defining embryonic stem cell identity using differentiation-related microRNAs and their potential targets. Mamm Genome 18, 316–27.

    CrossRef  PubMed  CAS  Google Scholar 

  28. Xi, Y., Nakajima, G., Gavin, E., Morris, C.G., Kudo, K., Hayashi, K., and Ju, J. (2007) Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA 13, 1668–74.

    CrossRef  PubMed  CAS  Google Scholar 

  29. Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-Agadjanyan, E.L., Peterson, A., Noteboom, J., O’Briant, K.C., Allen, A., et al. (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105, 10513–18.

    CrossRef  PubMed  CAS  Google Scholar 

  30. Chen, C., Ridzon, D.A., Broomer, A.J., Zhou, Z., Lee, D.H., Nguyen, J.T., Barbisin, M., Xu, N.L., Mahuvakar, V.R., Andersen, M.R., et al. (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33, e179.

    CrossRef  PubMed  Google Scholar 

  31. Gilad, S., Meiri, E., Yogev, Y., Benjamin, S., Lebanony, D., Yerushalmi, N., Benjamin, H., Kushnir, M., Cholakh, H., Melamed, N., et al. (2008) Serum microRNAs are promising novel biomarkers. PLoS One 3, e3148.

    CrossRef  PubMed  Google Scholar 

  32. Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A., et al. (2005) MicroRNA expression profiles classify human cancers. Nature 435, 834–8.

    CrossRef  PubMed  CAS  Google Scholar 

  33. Calin, G.A., Liu, C.G., Sevignani, C., Ferracin, M., Felli, N., Dumitru, C.D., Shimizu, M., Cimmino, A., Zupo, S., Dono, M., et al. (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101, 11755–60.

    CrossRef  PubMed  CAS  Google Scholar 

  34. Krichevsky, A.M., King, K.S., Donahue, C.P., Khrapko, K., and Kosik, K.S. (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9, 1274–81.

    CrossRef  PubMed  CAS  Google Scholar 

  35. Nelson, P.T., Baldwin, D.A., Scearce, L.M., Oberholtzer, J.C., Tobias, J.W., and Mourelatos, Z. (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1, 155–61.

    CrossRef  PubMed  CAS  Google Scholar 

  36. Sarkar, D., Parkin, R., Wyman, S., Bendoraite, A., Sather, C., Delrow, J., Godwin, A.K., Drescher, C., Huber, W., Gentleman, R., et al. (2008) Quality assessment and data analysis for microRNA expression arrays. Nucleic Acids Res 37, e17.

    CrossRef  PubMed  Google Scholar 

  37. Raymond, C.K., Roberts, B.S., Garrett-Engele, P., Lim, L.P., and Johnson, J.M. (2005) Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA 11, 1737–44.

    CrossRef  PubMed  CAS  Google Scholar 

  38. Shi, R. and Chiang, V.L. (2005) Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39, 519–25.

    CrossRef  PubMed  CAS  Google Scholar 

  39. Sharbati-Tehrani, S., Kutz-Lohroff, B., Bergbauer, R., Scholven, J., and Einspanier, R. (2008) miR-Q: a novel quantitative RT-PCR approach for the expression profiling of small RNA molecules such as miRNAs in a complex sample. BMC Mol Biol 9, 34.

    CrossRef  PubMed  Google Scholar 

  40. Chen, J., Lozach, J., Garcia, E.W., Barnes, B., Luo, S., Mikoulitch, I., Zhou, L., Schroth, G., and Fan, J.B. (2008) Highly sensitive and specific microRNA expression profiling using BeadArray technology. Nucleic Acids Res 36, e87.

    CrossRef  PubMed  Google Scholar 

  41. Allawi, H.T., Dahlberg, J.E., Olson, S., Lund, E., Olson, M., Ma, W.-P., Takova, T., Neri, B.P., and Lyamichev, V.I. (2004) Quantitation of microRNAs using a modified Invader assay. RNA 10, 1153–61.

    CrossRef  PubMed  CAS  Google Scholar 

  42. Jonstrup, S.P., Koch, J., and Kjems, J. (2006) A microRNA detection system based on padlock probes and rolling circle amplification. RNA 12, 1747–52.

    CrossRef  PubMed  CAS  Google Scholar 

  43. Schmittgen, T.D., Lee, E.J., Jiang, J., Sarkar, A., Yang, L., Elton, T.S., and Chen, C. (2008) Real-time PCR quantification of precursor and mature microRNA. Methods 44, 31–8.

    CrossRef  PubMed  CAS  Google Scholar 

  44. Mestdagh, P., Feys, T., Bernard, N., Guenther, S., Chen, C., Speleman, F., and Vandesompele, J. (2008) High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Res 36, e143.

    CrossRef  PubMed  Google Scholar 

  45. de Kok, J.B., Roelofs, R.W., Giesendorf, B.A., Pennings, J.L., Waas, E.T., Feuth, T., Swinkels, D.W., and Span, P.N. (2005) Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Invest 85, 154–9.

    PubMed  Google Scholar 

  46. Suzuki, T., Higgins, P.J., and Crawford, D.R. (2000) Control selection for RNA quantitation. Biotechniques 29, 332–7.

    PubMed  CAS  Google Scholar 

  47. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, RESEARCH0034.

    CrossRef  PubMed  Google Scholar 

  48. Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95, 14863–8.

    CrossRef  PubMed  CAS  Google Scholar 

  49. Andersen, C.L., Jensen, J.L., and Orntoft, T.F. (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64, 5245–50.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Neil Straus for comments and feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caifu Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Chen, C., Tan, R., Wong, L., Fekete, R., Halsey, J. (2011). Quantitation of MicroRNAs by Real-Time RT-qPCR. In: Park, D. (eds) PCR Protocols. Methods in Molecular Biology, vol 687. Humana Press. https://doi.org/10.1007/978-1-60761-944-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-944-4_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-943-7

  • Online ISBN: 978-1-60761-944-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics