Skip to main content

Multiparametric Magnetic Resonance Imaging and Repeated Measurements of Blood-Brain Barrier Permeability to Contrast Agents

  • Protocol
  • First Online:
The Blood-Brain and Other Neural Barriers

Abstract

Breakdown of the blood-brain barrier (BBB) is present in several neurological disorders such as stroke, brain tumors, and multiple sclerosis. Noninvasive evaluation of BBB breakdown is important for monitoring disease progression and evaluating therapeutic efficacy in such disorders. One of the few techniques available for noninvasively and repeatedly localizing and quantifying BBB damage is magnetic resonance imaging (MRI). This usually involves the intravenous administration of a gadolinium-containing MR contrast agent (MRCA) such as Gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA), followed by dynamic contrast-enhanced MR imaging (DCE-MRI) of brain and blood, and analysis of the resultant data to derive indices of blood-to-brain transfer. There are two advantages to this approach. First, measurements can be made repeatedly in the same animal; for instance, they can be made before drug treatment and then again after treatment to assess efficacy. Secondly, MRI studies can be multiparametric. That is, MRI can be used to assess not only a blood-to-brain transfer or influx rate constant (K i or K 1) by DCE-MRI but also complementary parameters such as: (1) cerebral blood flow (CBF), done in our hands by arterial spin-tagging (AST) methods; (2) magnetization transfer (MT) parameters, most notably T 1sat, which appear to reflect brain water-protein interactions plus BBB and tissue dysfunction; (3) the apparent diffusion coefficient of water (ADCw) and/or diffusion tensor, which is a function of the size and tortuosity of the extracellular space; and (4) the transverse relaxation time by T 2-weighted imaging, which demarcates areas of tissue abnormality in many cases. The accuracy and reliability of two of these multiparametric MRI measures, CBF by AST and DCE-MRI determined influx of Gd-DTPA, have been established by nearly congruent quantitative autoradiographic (QAR) studies with appropriate radiotracers. In addition, some of their linkages to local pathology have been shown via corresponding light microscopy and fluorescence imaging. This chapter describes: (1) multiparametric MRI techniques with emphasis on DCE-MRI and AST-MRI; (2) the measurement of the blood-to-brain influx rate constant and CBF; and (3) the role of each in determining BBB permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fenstermacher JD, Nagaraja T, Davies KR (2001) Overview of the structure and function of the blood-brain barrier in vivo. In Kobiler D, Lustig S, Shapira S (ed) Blood-Brain Barrier, Kluwer Academic/Plenum Publishers, New York, pp 1–7

    Google Scholar 

  2. Aronowski J, Strong R, Grotta JC (1997) Reperfusion injury: demonstration of brain damage produced by reperfusion after transient focal ischemia in rats. J Cereb Blood Flow Metab 17:1048–1056

    Article  CAS  PubMed  Google Scholar 

  3. Knight RA, Barker PB, Fagan SC, LiY, Jacobs MA, Welch KM (1998) Prediction of impending hemorrhagic transformation in ischemic stroke using magnetic resonance imaging in rats. Stroke 29:144–151

    CAS  PubMed  Google Scholar 

  4. The NINDS. (The NINDS t-PA Stroke Study Group) (1997) Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. Stroke 28:2109–2118

    Google Scholar 

  5. Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin E, Bammer R, Kakuda W, Lansberg MG, Shuaib A, Coplin W, Hamilton S, Moseley M, Marks MP (2006) Magnetic resonance imaging profiles predict clinical response to early reperfusion: the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution (DEFUSE) study. Ann Neurol 60:508–517

    Article  PubMed  Google Scholar 

  6. Köhrmann M, Jüttler E, Fiebach JB, Huttner HB, Siebert S, Schwark C, Ringleb PA, Schellinger PD, Hacke W (2005) MRI versus CT-based thrombolysis treatment within and beyond the 3 h time window after stroke onset: a cohort study. Lancet Neurol 5:661–667

    Article  Google Scholar 

  7. Schellinger PD, Thomalla G, Fiehler J, Köhrmann M, Molina CA, Neumann-Haefelin T, Ribo M, Singer OC, Zaro-Weber O, Sobesky J (2007) MRI-based and CT-based thrombolytic therapy in acute stroke within and beyond established time windows: an analysis of 1210 patients. Stroke 38:2640–2645

    Article  PubMed  Google Scholar 

  8. Latour LL, Kang DW, Ezzeddine MA, Chalela JA, Warach S (2004) Early blood-brain barrier disruption in human focal brain ischemia. Ann Neurol 56:468–477

    Article  PubMed  Google Scholar 

  9. Warach S, Wardlaw J (2006) Advances in imaging 2005. Stroke 37:297–298

    Article  PubMed  Google Scholar 

  10. Fagan SC, Nagaraja TN, Fenstermacher JD, Zheng J, Johnson M, Knight RA (2003) Hemorrhagic transformation is related to the duration of occlusion and treatment with tissue plasminogen activator in a non-embolic stroke model. Neurol Res 25: 377–382

    Article  CAS  PubMed  Google Scholar 

  11. Hjort N, Wu O, Ashkanian M, Solling C, Mouridsen K, Christensen S, Gyldensted C, Andersen G, Ostergaard L (2008) MRI detection of early blood-brain barrier disruption: parenchymal enhancement predicts focal hemorrhagic transformation after thrombolysis. Stroke 39:1025–1028

    Article  PubMed  Google Scholar 

  12. Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:367–367

    Article  Google Scholar 

  13. Ewing JR, Knight RA, Nagaraja TN, Yee JS, Nagesh V, Whitton PA, Li L, Fenstermacher JD (2003) Patlak plots of Gd-DTPA MRI data yield blood-brain transfer constants concordant with those of 14C-sucrose in areas of blood-brain opening. Magn Reson Med 50:283–292

    Article  PubMed  Google Scholar 

  14. Patlak CS, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 5:584–590

    CAS  PubMed  Google Scholar 

  15. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7

    CAS  PubMed  Google Scholar 

  16. Knight RA, Nagaraja TN, Ewing JR, Nagesh V, Whitton PA, Bershad E, Fagan SC, Fenstermacher JD (2005) Quantitation and localization of blood-to-brain influx by magnetic resonance imaging and quantitative autoradiography in a model of transient focal ischemia. Magn Reson Med 54:813–821

    Article  CAS  PubMed  Google Scholar 

  17. Knight RA, Nagesh V, Nagaraja TN, Ewing JR, Whitton PA, Bershad E, Fagan SC, Fenstermacher JD (2005) Acute blood-brain barrier opening in experimentally induced focal cerebral ischemia is preferentially identified by quantitative magnetization transfer imaging. Magn Reson Med 54:822–832

    Article  PubMed  Google Scholar 

  18. Nagaraja TN, Karki K, Ewing JR, Croxen RL, Knight RA (2008) Identification of variations in blood-brain barrier opening after cerebral ischemia by dual contrast-enhanced magnetic resonance imaging and T1sat measurements. Stroke 39:427–432

    Article  PubMed  Google Scholar 

  19. Ewing JR, Brown SL, Lu M, Panda S, Ding G, Knight RA, Cao Y, Jiang Q, Nagaraja TN, Churchman JL, Fenstermacher JD (2006) Model selection in magnetic resonance imaging measurements of vascular permeability: Gadomer in a 9L model of rat cerebral tumor. J Cereb Blood Flow Metab 26:310–320

    Article  PubMed  Google Scholar 

  20. Ewing JR, Brown SL, Nagaraja TN, Bagher-Ebadian H, Paudyal R, Panda S, Knight RA, Ding G, Jiang Q, Lu M, Fenstermacher JD (2008) MRI measurement of change in vascular parameters in the 9L rat cerebral tumor after dexamethasone administration. J Magn Reson Imaging 27:1430–1438

    Article  PubMed  Google Scholar 

  21. Kim JH, Khil MS, Kolozsvary A, Gutierrez JA, Brown SL (1999) Fractionated radiosurgery for 9L gliosarcoma in the rat brain. Int J Rad Oncol Biol Phys 45:1035–1040

    CAS  Google Scholar 

  22. Ewing JR, Wei L, Knight RA, Pawa S, Nagaraja TN, Brusca T, Divine GW, Fenstermacher JD (2003) Direct comparison of local cerebral blood flow rates measured by MRI arterial spin-tagging and quantitative autoradiography in a rat model of experimental cerebral ischemia. J Cereb Blood Flow Metab 23:198–209

    Article  PubMed  Google Scholar 

  23. Ewing JR, Jiang Q, Boska M, Zhang L, Zhang ZG, Brown SL, Li GH, Divine GW, Chopp M (1999) T1 and magnetization transfer at 7 Tesla in acute ischemic infarct in the rat. Magn Reson Med 41:696–705

    Article  CAS  PubMed  Google Scholar 

  24. Look DC, Locker DR (1970) Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instruments 41:250–251

    Article  CAS  Google Scholar 

  25. Brix G, Schad LR, Deimling M, Lorenz WJ (1990) Fast and precise T1 imaging using a TOMROP sequence. Magn Reson Imaging 8:351–356

    Article  CAS  PubMed  Google Scholar 

  26. Crawley AP, Henkelman MR (1988) A comparison of one-shot and recovery methods in T1 imaging. Magn Reson Med 7:23–34

    Article  CAS  PubMed  Google Scholar 

  27. Nagaraja TN, Nagesh V, Ewing JR, Whitton PA, Fenstermacher JD, Knight RA (2007) Step-down infusions of Gd-DTPA yield greater contrast-enhanced magnetic resonance images of BBB damage in acute stroke than bolus injections. Magn Reson Imaging 25:311–318

    Article  CAS  PubMed  Google Scholar 

  28. Knight RA, Karki K, Ewing JR, Divine GW, Fenstermacher JD, Patlak CS, Nagaraja TN (2009) Estimating blood and brain concentrations and blood-to-brain influx by magnetic resonance imaging with step-down infusion of Gd-DTPA in focal transient cerebral ischemia and confirmation by quantitative autoradiography with Gd-[14C]DTPA. J Cereb Blood Flow Metab 29:1048–1058

    Article  CAS  PubMed  Google Scholar 

  29. Yankeelov TE, Rooney WD, Li X, Springer CS Jr. (2003) Variation of the relaxographic “shutter-speed” for transcytolemmal water exchange affects the CR bolus-tracking curve shape. Magn Reson Med 50:1151–1169

    Article  PubMed  Google Scholar 

  30. Blasberg RG, Fenstermacher JD, Patlak CS (1983) Transport of α-aminoisobutyric acid across brain capillary and cellular membranes. J Cereb Blood Flow Metab 3:8–32

    CAS  PubMed  Google Scholar 

  31. Ball G, Hall D (1965) ISODATA, A novel method of data analysis and pattern classification. Stanford Research Institute, Menlo Park

    Google Scholar 

  32. Nakagawa H, Groothuis DR, Owens ES, Fenstermacher JD, Patlak CS, Blasberg RG (1987) Dexamethasone effects on [125I]albumin distribution in experimental RG-2 gliomas and adjacent brain. J Cereb Blood Flow Metab 7:687–701

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants 1RO1NS38540 and 1RO1HL70023; American Heart Association grants 0270176N and 0635403N; and research funds from the Henry Ford Health System. The authors thank Polly A. Whitton, Jun Xu, Kelly A. Keenan, Richard L. Croxen and Swayamprava Panda for their technical contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tavarekere N. Nagaraja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nagaraja, T.N., Knight, R.A., Ewing, J.R., Karki, K., Nagesh, V., Fenstermacher, J.D. (2011). Multiparametric Magnetic Resonance Imaging and Repeated Measurements of Blood-Brain Barrier Permeability to Contrast Agents. In: Nag, S. (eds) The Blood-Brain and Other Neural Barriers. Methods in Molecular Biology, vol 686. Humana Press. https://doi.org/10.1007/978-1-60761-938-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-938-3_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-937-6

  • Online ISBN: 978-1-60761-938-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics