Skip to main content

The Blood–Cerebrospinal Fluid Barrier: Structure and Functional Significance

  • Protocol
  • First Online:
The Blood-Brain and Other Neural Barriers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 686))

Abstract

The choroid plexus (CP) of the blood–CSF barrier (BCSFB) displays fundamentally different properties than blood-brain barrier (BBB). With brisk blood flow (10 × brain) and highly permeable capillaries, the human CP provides the CNS with a high turnover rate of fluid (∼400,000 μL/day) containing micronutrients, peptides, and hormones for neuronal networks. Renal-like basement membranes in microvessel walls and underneath the epithelium filter large proteins such as ferritin and immunoglobulins. Type IV collagen (α3, α4, and α5) in the subepithelial basement membrane confers kidney-like permselectivity. As in the glomerulus, so also in CP, the basolateral membrane utrophin A and colocalized dystrophin impart structural stability, transmembrane signaling, and ion/water homeostasis. Extensive infoldings of the plasma-facing basal labyrinth together with lush microvilli at the CSF-facing membrane afford surface area, as great as that at BBB, for epithelial solute and water exchange. CSF formation occurs by basolateral carrier-mediated uptake of Na+, Cl, and HCO 3 , followed by apical release via ion channel conductance and osmotic flow of water through AQP1 channels. Transcellular epithelial active transport and secretion are energized and channeled via a highly dense organelle network of mitochondria, endoplasmic reticulum, and Golgi; bleb formation occurs at the CSF surface. Claudin-2 in tight junctions helps to modulate the lower electrical resistance and greater permeability in CP than at BBB. Still, ratio analyses of influx coefficients (K in) for radiolabeled solutes indicate that paracellular diffusion of small nonelectrolytes (e.g., urea and mannitol) through tight junctions is restricted; molecular sieving is proportional to solute size. Protein/peptide movement across BCSFB is greatly limited, occurring by paracellular leaks through incomplete tight junctions and low-capacity transcellular pinocytosis/exocytosis. Steady-state concentration ratios, CSF/plasma, ranging from 0.003 for IgG to 0.80 for urea, provide insight on plasma solute penetrability, barrier permeability, and CSF sink action to clear substances from CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Johanson CE (1988) The choroid plexus-arachnoid-cerebrospinal fluid system. In: Boulton A, Baker G, Walz W (eds) Neuromethods: Neuronal microenvironment-electrolytes and water spaces, 1st edn, Humana Press, Clifton.

    Google Scholar 

  2. Johanson C (1998) Arachnoid membrane, subarachnoid CSF and pia-glia. In: Pardridge W (ed) An introduction to the blood-brain barrier: methodology and biology, Cambridge University Press, Cambridge

    Google Scholar 

  3. Harbut RE, Johanson CE (1986) Third ventricle choroid plexus function and its response to acute perturbations in plasma chemistry. Brain Res 374: 137–146

    Article  PubMed  CAS  Google Scholar 

  4. Levine S, Saltzman A, Ginsberg SD (2008) Different inflammatory reactions to vitamin D3 among the lateral, third and fourth ventricular choroid plexuses of the rat. Exp Mol Pathol 85: 117–121

    Article  PubMed  CAS  Google Scholar 

  5. Netsky M, Shuangshoti S (1975) The choroid plexus in health and disease. University Press of Virginia, Charlottesville

    Google Scholar 

  6. Saunders NR, Habgood MD, Dziegielewska KM (1999) Barrier mechanisms in the brain, II. Immature brain. Clin Exp Pharmacol Physiol 26: 85–91

    Article  PubMed  CAS  Google Scholar 

  7. Redzic ZB, Preston JE, Duncan JA, Chodobski A, Szmydynger-Chodobska J (2005) The choroid plexus-cerebrospinal fluid system: from development to aging. Curr Top Dev Biol 71: 1–52

    Article  PubMed  CAS  Google Scholar 

  8. Spector R, Johanson C (2006) Micronutrient and urate transport in choroid plexus and kidney: implications for drug therapy. Pharm Res 23: 2515–2524

    Article  PubMed  CAS  Google Scholar 

  9. Spector R, Johanson CE (2007) Vitamin transport and homeostasis in mammalian brain: focus on Vitamins B and E. J Neurochem 103: 425–438

    Article  PubMed  CAS  Google Scholar 

  10. Costa R, Ferreira-da-Silva F, Saraiva MJ, Cardoso I (2008) Transthyretin protects against A-beta peptide toxicity by proteolytic cleavage of the peptide: a mechanism sensitive to the Kunitz protease inhibitor. PloS one 3: e2899

    Article  PubMed  CAS  Google Scholar 

  11. Johanson CE, Duncan JA III, Klinge PM, Brinker T, Stopa EG, Silverberg GD (2008) Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res 5: 10

    Article  PubMed  CAS  Google Scholar 

  12. Preston JE (2001) Ageing choroid plexus-cerebrospinal fluid system. Microsc Res Tech 52: 31–37

    Article  PubMed  CAS  Google Scholar 

  13. Battle T, Preisser L, Marteau V, Meduri G, Lambert M, Nitschke R, Brown PD, Corman B (2000) Vasopressin V1a receptor signaling in a rat choroid plexus cell line. Biochem Biophys Res Commun 275: 322–327

    Article  PubMed  CAS  Google Scholar 

  14. Nakamura S, Milhorat TH (1978) Nerve endings in the choroid plexus of the fourth ventricle of the rat: electron microscopic study. Brain Res 153: 285–293

    Article  PubMed  CAS  Google Scholar 

  15. Mignini F, Bronzetti E, Felici L, Ricci A, Sabbatini M, Tayebati SK, Amenta F (2000) Dopamine receptor immunohistochemistry in the rat choroid plexus. J Auton Pharmacol 20: 325–332

    Article  PubMed  CAS  Google Scholar 

  16. Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40: 648–677

    Article  PubMed  CAS  Google Scholar 

  17. Vorbrodt AW, Dobrogowska DH (2003) Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: electron microscopist’s view. Brain Res Brain Res Rev 42: 221–242

    Article  PubMed  CAS  Google Scholar 

  18. Kumagai AK, Dwyer KJ, Pardridge WM (1994) Differential glycosylation of the GLUT1 glucose transporter in brain capillaries and choroid plexus. Biochim Biophys Acta 1193: 24–30

    Article  PubMed  CAS  Google Scholar 

  19. Johanson CE, Jones HC, Stopa EG, Ayala C, Duncan JA, McMillan PN (2002) Enhanced expression of the Na-K-2 Cl cotransporter at different regions of the blood-CSF barrier in the perinatal H-Tx rat. Eur J Pediatr Surg 12 Suppl 1: S47–S49

    PubMed  Google Scholar 

  20. Itokazu Y, Kitada M, Dezawa M, Mizoguchi A, Matsumoto N, Shimizu A, Ide C (2006) Choroid plexus ependymal cells host neural progenitor cells in the rat. Glia 53: 32–42

    Article  PubMed  Google Scholar 

  21. Kuchler-Bopp S, Ittel ME, Dietrich JB, Reeber A, Zaepfel M, Delaunoy JP (1998) The presence of transthyretin in rat ependymal cells is due to endocytosis and not synthesis. Brain Res 793: 219–230

    Article  PubMed  CAS  Google Scholar 

  22. Dohrmann GJ (1970) Dark and light epithelial cells in the choroid plexus of mammals. J Ultrastruct Res 32: 268–273

    Article  PubMed  CAS  Google Scholar 

  23. Johanson CE, Szmydynger-Chodobska J, Chodobski A, Baird A, McMillan P, Stopa EG (1999) Altered formation and bulk absorption of cerebrospinal fluid in FGF-2-induced hydrocephalus. Am J Physiol 277: R263–271

    PubMed  CAS  Google Scholar 

  24. Johanson CE, Preston JE, Chodobski A, Stopa EG, Szmydynger-Chodobska J, McMillan PN (1999) AVP V1 receptor-mediated decrease in Cl- efflux and increase in dark cell number in choroid plexus epithelium. Am J Physiol 276: C82–90

    PubMed  CAS  Google Scholar 

  25. Johanson CE, Donahue JE, Spangenberger A, Stopa EG, Duncan JA, Sharma HS (2006) Atrial natriuretic peptide: its putative role in modulating the choroid plexus-CSF system for intracranial pressure regulation. Acta Neurochir Suppl 96: 451–456

    Article  PubMed  CAS  Google Scholar 

  26. Nag S (1991) Effect of atrial natriuretic factor on permeability of the blood-cerebrospinal fluid barrier. Acta Neuropathol 82: 274–279

    Article  PubMed  CAS  Google Scholar 

  27. Bishop GA, Berbari NF, Lewis J, Mykytyn K. (2007) Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain. J Comp Neurol 505: 562–571

    Article  PubMed  Google Scholar 

  28. Singhrao SK, Neal JW, Rushmere NK, Morgan BP, Gasque P (1999) Differential expression of individual complement regulators in the brain and choroid plexus. Lab Invest 79: 1247–1259

    PubMed  CAS  Google Scholar 

  29. Cserr HF (1971) Physiology of the choroid plexus. Physiol Rev 51: 273–311

    PubMed  CAS  Google Scholar 

  30. Pollay M, Stevens FA, Roberts PA (1983) Alteration in choroid-plexus blood flow and cerebrospinal-fluid formation by increased ventricular pressure. In: Wood JH (ed) Neurobiology of cerebrospinal fluid, Raven Press, New York

    Google Scholar 

  31. Johanson CE, Woodbury DM (1978) Uptake of [14C]urea by the in vivo choroid plexus–cerebrospinal fluid–brain system: identification of sites of molecular sieving. J Physiol 275: 167–176

    PubMed  CAS  Google Scholar 

  32. Spector R, Johanson CE (1989) The mammalian choroid plexus. Sci Am 261: 68–74.

    Article  PubMed  CAS  Google Scholar 

  33. Husted RF, Reed DJ (1977) Regulation of cerebrospinal fluid bicarbonate by the cat choroid plexus. J Physiol 267: 411–428

    PubMed  CAS  Google Scholar 

  34. Reed DJ, Yen MH (1978) The role of the cat choroid plexus in regulating cerebrospinal fluid magnesium. J Physiol 281: 477–485

    PubMed  CAS  Google Scholar 

  35. Ghersi-Egea JF, Strazielle N (2001) Brain drug delivery, drug metabolism, and multidrug resistance at the choroid plexus. Micros Res Tech 52: 83–88

    Article  CAS  Google Scholar 

  36. Vercellino M, Votta B, Condello C, Piacentino C, Romagnolo A, Merola A, Capello E, Mancardi GL, Mutani R, Giordana MT, Cavalla P (2008) Involvement of the choroid plexus in multiple sclerosis autoimmune inflammation: a neuropathological study. J Neuroimmunol 199: 133–141

    Article  PubMed  CAS  Google Scholar 

  37. Nilsson C, Lindvall-Axelsson M, Owman C (1992) Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system. Brain Res Brain Res Rev 17: 109–138

    Article  PubMed  CAS  Google Scholar 

  38. Chodobski A, Szmydynger-Chodobska J (2001) Choroid plexus: target for polypeptides and site of their synthesis. Microsc Res Tech 52: 65–82

    Article  PubMed  CAS  Google Scholar 

  39. Smith DE, Johanson CE, Keep RF (2004) Peptide and peptide analog transport systems at the blood-CSF barrier. Adv Drug Deliv Rev 56: 1765–1791

    Article  PubMed  CAS  Google Scholar 

  40. Johanson CE, Reed DJ, Woodbury DM (1974) Active transport of sodium and potassium by the choroid plexus of the rat. J Physiol 241: 359–372

    PubMed  CAS  Google Scholar 

  41. Faraci FM, Heistad DD (1992) Does basal production of nitric oxide contribute to regulation of brain-fluid balance? Am J Physiol 262: H340–344

    PubMed  CAS  Google Scholar 

  42. Szmydynger-Chodobska J, Chodobski A, Johanson CE (1994) Postnatal developmental changes in blood flow to choroid plexuses and cerebral cortex of the rat. Am J Physiol 266: R1488–1492

    PubMed  CAS  Google Scholar 

  43. Zagorska-Swiezy K, Litwin JA, Gorczyca J, Pitynski K, Miodonski AJ (2008) The microvascular architecture of the choroid plexus in fetal human brain lateral ventricle: a scanning electron microscopy study of corrosion casts. J Anat 213: 259–265

    Article  PubMed  CAS  Google Scholar 

  44. Weiger T, Lametschwandtner A, Hodde KC, Adam H (1986) The angioarchitecture of the choroid plexus of the lateral ventricle of the rabbit. A scanning electron microscopic study of vascular corrosion casts. Brain Res 378: 285–296

    CAS  Google Scholar 

  45. Motti ED, Imhof HG, Janzer RC, Marquardt K, Yasargil GM (1986) The capillary bed in the choroid plexus of the lateral ventricles: a study of luminal casts. Scan Elec Micros (Pt 4): 1501–1513

    Google Scholar 

  46. Hurley JV, Anderson RM, Sexton PT (1981) The fate of plasma protein which escapes from blood vessels of the choroid plexus of the rat–an electron microscope study. J Pathol 134: 57–70

    Article  PubMed  CAS  Google Scholar 

  47. Brightman MW (1975) Ultrastructural characteristics of adult choroid plexus: Relation to the blood-cerebrospinal fluid barrier to proteins. In: Netsky MG, Shuangshoti S (eds) The choroid plexus in health and disease, University Press of Virginia, Charlottesville, VA

    Google Scholar 

  48. Bouchaud C, Le Bert M, Dupouey P (1989) Are close contacts between astrocytes and endothelial cells a prerequisite condition of a blood-brain barrier? The rat subfornical organ as an example. Biol Cell 67: 159–165

    Article  PubMed  CAS  Google Scholar 

  49. Peress NS, Tompkins D (1981) Effect of molecular charge on choroid-plexus permeability: Tracer studies with cationized ferritins. Cell Tiss Res 219: 425–431

    CAS  Google Scholar 

  50. Schmidley JW, Wissig SL (1986) Basement membrane of central nervous system capillaries lacks ruthenium red-staining sites. Microvas Res 32: 300–314

    Article  CAS  Google Scholar 

  51. Liu J, Feng ZC, Yin XJ, Chen H, Lu J, Qiao X (2008) The role of antenatal corticosteroids for improving the maturation of choroid plexus capillaries in fetal mice. Eur J Ped 167: 1209–1212

    Article  CAS  Google Scholar 

  52. Smith QR, Pershing LK, Johanson CE (1981) A comparative analysis of extracellular fluid volume of several tissues as determined by six different markers. Life Sci 29: 449–456

    Article  PubMed  Google Scholar 

  53. Johanson CE (1980) Permeability and vascularity of the developing brain: cerebellum vs cerebral cortex. Brain Res 190: 3–16

    Article  PubMed  CAS  Google Scholar 

  54. Murphy VA, Johanson CE (1990) Na(+)-H(+) exchange in choroid plexus and CSF in acute metabolic acidosis or alkalosis. Am J Physiol 258: F1528–1537

    PubMed  CAS  Google Scholar 

  55. Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W (1998) Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol 140: 947–959

    Article  PubMed  CAS  Google Scholar 

  56. Nourhaghighi N, Teichert-Kuliszewska K, Davis J, Stewart DJ, Nag S (2003) Altered expression of angiopoietins during blood-brain barrier breakdown and angiogenesis. Lab Invest 83: 1211–1222

    Article  PubMed  CAS  Google Scholar 

  57. Braun JS, Le Hir M, Kaissling B (1994) Morphology and distribution of ecto-5’-nucleotidase-positive cells in the rat choroid plexus. J Neurocytol 23: 193–200

    Article  PubMed  CAS  Google Scholar 

  58. Tenenbaum T, Matalon D, Adam R, Seibt A, Wewer C, Schwerk C, Galla HJ, Schroten H (2008) Dexamethasone prevents alteration of tight junction-associated proteins and barrier function in porcine choroid plexus epithelial cells after infection with Streptococcus suis in vitro. Brain Res 1229: 1–17

    Article  PubMed  CAS  Google Scholar 

  59. Haselbach M, Wegener J, Decker S, Engelbertz C, Galla HJ (2001) Porcine choroid plexus epithelial cells in culture: regulation of barrier properties and transport processes. Micros Res Tech 52: 137–152

    Article  CAS  Google Scholar 

  60. Oda Y, Nakanishi I (1987) Ultrastructural observations of the development of the fourth ventricular roof in the mouse brain. J Comp Neurol 263: 282–289

    Article  PubMed  CAS  Google Scholar 

  61. Urabe N, Naito I, Saito K, Yonezawa T, Sado Y, Yoshioka H, Kusachi S, Tsuji T, Ohtsuka A, Taguchi T, Murakami T, Ninomiya Y (2002) Basement membrane type IV collagen molecules in the choroid plexus, pia mater and capillaries in the mouse brain. Arch Histol Cytol 65: 133–143

    Article  PubMed  CAS  Google Scholar 

  62. Utriainen A, Sormunen R, Kettunen M, Carvalhaes LS, Sajanti E, Eklund L, Kauppinen R, Kitten GT, Pihlajaniemi T (2004) Structurally altered basement membranes and hydrocephalus in a type XVIII collagen deficient mouse line. Hum Mol Genet 13: 2089–2099

    Article  PubMed  CAS  Google Scholar 

  63. Serot JM, Foliguet B, Bene MC, Faure GC (2001) Choroid plexus and ageing in rats: a morphometric and ultrastructural study. Eur J Neurosci 14: 794–798

    Article  PubMed  CAS  Google Scholar 

  64. Pittella JE, Bambirra EA (1991) Immune complexes in the choroid plexus in liver cirrhosis. Arch Pathol Lab Med 115: 220–222

    PubMed  CAS  Google Scholar 

  65. Larsen EH, Willumsen NJ, Mobjerg N, and Sorensen JN (2009) The lateral intercellular space as osmotic coupling compartment in isotonic transport. Acta Physiol (Oxf) 195: 171–186

    Article  CAS  Google Scholar 

  66. Hill AE (2008) Fluid transport: A guide for the perplexed. J Mem Biol 223: 1–11

    Article  CAS  Google Scholar 

  67. Smith QR, Woodbury DM, Johanson CE (1982) Kinetic analysis of [36Cl]-, [22Na]- and [3H]mannitol uptake into the in vivo choroid plexus-cerebrospinal fluid brain system: ontogeny of the blood brain and blood-CSF barriers. Brain Res 255: 181–198

    PubMed  CAS  Google Scholar 

  68. Wolburg H, Wolburg-Buchholz K, Liebner S, Engelhardt B (2001) Claudin-1, claudin-2 and claudin-11 are present in tight junctions of choroid plexus epithelium of the mouse. Neurosci Lett 307: 77–80

    Article  PubMed  CAS  Google Scholar 

  69. Amasheh S, Milatz S, Krug SM, Markov AG, Gunzel D, Amasheh M, Fromm M (2009) Tight junction proteins as channel formers and barrier builders. Ann NY Acad Sci 1165: 211–219

    Article  PubMed  CAS  Google Scholar 

  70. Rapoport SI (1976) The blood-brain barrier in physiology and medicine, Raven, New York

    Google Scholar 

  71. Miller DS (2004) Confocal imaging of xenobiotic transport across the choroid plexus. Adv Drug Del Rev 56: 1811–1824

    Article  CAS  Google Scholar 

  72. Rao VV, Dahlheimer JL, Bardgett ME, Snyder AZ, Finch RA, Sartorelli AC, Piwnica-Worms D. (1999) Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood-cerebrospinal-fluid drug-permeability barrier. Proc Natl Acad Sci U S A 96: 3900–3905

    Article  PubMed  CAS  Google Scholar 

  73. Praetorius J, Nejsum LN, Nielsen S (2004) A SCL4A10 gene product maps selectively to the basolateral plasma membrane of choroid plexus epithelial cells. Am J Physiol Cell Physiol 286: C601–610

    Article  PubMed  CAS  Google Scholar 

  74. Markovic I, Segal M, Djuricic B, Redzic Z (2008) Kinetics of nucleoside uptake by the basolateral side of the sheep choroid plexus epithelium perfused in situ. Exp Physiol 93: 325–333

    Article  PubMed  CAS  Google Scholar 

  75. Weir AP, Burton EA, Harrod G, Davies KE (2002) A- and B-utrophin have different expression patterns and are differentially up-regulated in mdx muscle. J Biol Chem 277: 45285–45290

    Article  PubMed  CAS  Google Scholar 

  76. Haenggi T, Fritschy JM (2006) Role of dystrophin and utrophin for assembly and function of the dystrophin glycoprotein complex in non-muscle tissue. Cell Mol Life Sci 63: 1614–1631

    Article  PubMed  CAS  Google Scholar 

  77. Knuesel I, Bornhauser BC, Zuellig RA, Heller F, Schaub MC, Fritschy JM (2000) Differential expression of utrophin and dystrophin in CNS neurons: an in situ hybridization and immunohistochemical study. J Comp Neurol 422: 594–611

    Article  PubMed  CAS  Google Scholar 

  78. Gorecki DC, Abdulrazzak H, Lukasiuk K, Barnard EA (1997) Differential expression of syntrophins and analysis of alternatively spliced dystrophin transcripts in the mouse brain. Eur J Neurosci 9: 965–976

    Article  PubMed  CAS  Google Scholar 

  79. Khurana TS, Watkins SC, Kunkel LM (1992) The subcellular distribution of chromosome 6-encoded dystrophin-related protein in the brain. J Cell Biol 119: 357–366

    Article  PubMed  CAS  Google Scholar 

  80. Prochniewicz E, Henderson D, Ervasti JM, Thomas DD (2009) Dystrophin and utrophin have distinct effects on the structural dynamics of actin. Proc Natl Acad Sci U S A 106: 7822–7827

    Article  PubMed  Google Scholar 

  81. Mobasheri A, Wray S, Marples D (2005) Distribution of AQP2 and AQP3 water channels in human tissue microarrays. J Mol Histol 36: 1–14

    Article  PubMed  CAS  Google Scholar 

  82. Cornford EM, Varesi JB, Hyman S, Damian RT, Raleigh MJ (1997) Mitochondrial content of choroid plexus epithelium. Exp Brain Res. Experimentelle Hirnforschung 116: 399–405

    Article  CAS  Google Scholar 

  83. Oldendorf WH, Cornford ME, Brown WJ (1977) The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1: 409–417

    Article  PubMed  CAS  Google Scholar 

  84. Mathew TC (2007) Diversity in the surface morphology of adjacent epithelial cells of the choroid plexus: an ultrastructural analysis. Mol Cell Biochem 301: 235–239

    Article  PubMed  CAS  Google Scholar 

  85. De Spiegelaere W, Casteleyn C, Van den Broeck W, Simoens P (2008) Electron microscopic study of the porcine choroid plexus epithelium. Anat Histol Embryol 37: 458–463

    Article  PubMed  Google Scholar 

  86. Agnew WF, Alvarez RB, Yuen TG, Crews AK (1980) Protein synthesis and transport by the rat choroid plexus and ependyma: an autoradiographic study. Cell Tiss Res 208: 261–281

    Article  CAS  Google Scholar 

  87. Gudeman DM, Brightman MW, Merisko EM, Merril CR (1989) Release from live choroid plexus of apical fragments and electrophoretic characterization of their synthetic products. J Neurosci Res 24: 184–191

    Article  PubMed  CAS  Google Scholar 

  88. Johanson C, McMillan P, Palm D, Stopa E, Doberstein C, Duncan JA (2003) Volume transmission-mediated protective impact of choroid plexus-CSF growth factors on forebrain ischemic injury. In: Sharma H, Westman J (eds) Blood-spinal cord and brain barriers in health and disease, Academic Press, San Diego

    Google Scholar 

  89. Keep RF, Jones HC (1990) A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Brain Res Dev Brain Res 56: 47–53

    Article  PubMed  CAS  Google Scholar 

  90. Speake T, Brown PD (2004) Ion channels in epithelial cells of the choroid plexus isolated from the lateral ventricle of rat brain. Brain Res 1005: 60–66

    Article  PubMed  CAS  Google Scholar 

  91. Keep RF, Xiang J, Betz AL (1994) Potassium cotransport at the rat choroid plexus. Am J Physiol 267: C1616–1622

    PubMed  CAS  Google Scholar 

  92. Wu Q, Delpire E, Hebert SC, Strange K (1998) Functional demonstration of Na+-K+-2Cl- cotransporter activity in isolated, polarized choroid plexus cells. Am J Physiol 275: C1565–1572

    PubMed  CAS  Google Scholar 

  93. Brown PD, Davies SL, Speake T, Millar ID (2004) Molecular mechanisms of cerebrospinal fluid production. Neurosci 129: 957–970

    Article  CAS  Google Scholar 

  94. Banizs B, Komlosi P, Bevensee MO, Schwiebert EM, Bell PD, Yoder BK (2007) Altered pH(i) regulation and Na(+)/HCO3(-) transporter activity in choroid plexus of cilia-defective Tg737(orpk) mutant mouse. Am J Physiol 292: C1409–1416

    Article  CAS  Google Scholar 

  95. Banizs B, Pike MM, Millican CL, Ferguson WB, Komlosi P, Sheetz J, Bell PD, Schwiebert EM, Yoder BK (2005) Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development 132: 5329–5339

    Article  PubMed  CAS  Google Scholar 

  96. Monkkonen KS, Hakumaki JM, Hirst RA, Miettinen RA, O’Callaghan C, Mannisto PT, Laitinen JT (2007) Intracerebroventricular antisense knockdown of G alpha i2 results in ciliary stasis and ventricular dilatation in the rat. BMC Neurosci 8: 26

    Article  PubMed  CAS  Google Scholar 

  97. Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, Murcia NS, Garcia-Verdugo JM, Marin O, Rubenstein JL, Tessier-Lavigne M, Okano H, Alvarez-Buylla A (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311: 629–632

    Article  PubMed  CAS  Google Scholar 

  98. Strazielle N, Belin MF, Ghersi-Egea JF (2003) Choroid plexus controls brain availability of anti-HIV nucleoside analogs via pharmacologically inhibitable organic anion transporters. AIDS 17: 1473–1485

    Article  PubMed  CAS  Google Scholar 

  99. Strazielle N, Ghersi-Egea JF (2005) In vitro investigation of the blood-cerebrospinal fluid barrier properties: Primary cultures and immortalized cell lines of the choroidal epithelium. In: Zheng W, Chodobski A (eds) The blood-cerebrospinal fluid barrier, 1st ed. Taylor & Francis, Boca Raton

    Google Scholar 

  100. Qiao H, May JM (2008) Development of ascorbate transporters in brain cortical capillary endothelial cells in culture. Brain Res 1208: 79–86

    Article  PubMed  CAS  Google Scholar 

  101. Chen RL, Kassem NA, Redzic ZB, Chen CP, Segal MB, Preston JE (2009) Age-related changes in choroid plexus and blood-cerebrospinal fluid barrier function in the sheep. Exp Gerontol 44: 289–296

    Article  PubMed  CAS  Google Scholar 

  102. Parandoosh Z, Johanson CE (1982) Ontogeny of blood-brain barrier permeability to, and cerebrospinal fluid sink action on, [14C] urea. Am J Physiol 243: R400–407

    PubMed  CAS  Google Scholar 

  103. Johansson PA, Dziegielewska KM, Ek CJ, Habgood MD, Mollgard K, Potter A, Schuliga M, Saunders NR (2005) Aquaporin-1 in the choroid plexuses of developing mammalian brain. Cell Tissue Res 322: 353–364

    Article  PubMed  CAS  Google Scholar 

  104. Gomori E, Pal J, Abraham H, Vajda Z, Sulyok E, Seress L, Doczi T. (2006) Fetal development of membrane water channel proteins aquaporin-1 and aquaporin-4 in the human brain. Int J Dev Neurosci 24: 295–305

    Article  PubMed  CAS  Google Scholar 

  105. Masseguin C, LePanse S, Corman B, Verbavatz JM, Gabrion J (2005) Aging affects choroidal proteins involved in CSF production in Sprague-Dawley rats. Neurobiol Aging 26: 917–927

    Article  PubMed  CAS  Google Scholar 

  106. Oshio K, Watanabe H, Song Y, Verkman AS, Manley GT (2005) Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J 19: 76–78

    PubMed  CAS  Google Scholar 

  107. Moon Y, Hong SJ, Shin D, Jung Y (2006) Increased aquaporin-1 expression in choroid plexus epithelium after systemic hyponatremia. Neurosci Lett 395: 1–6

    Article  PubMed  CAS  Google Scholar 

  108. Kim JG, Son YJ, Yun CH, Kim YI, Nam-Goong, IS, Park JH, Park SK, Ojeda SR, D’Elia AV, Damante G, Lee BJ (2007) Thyroid transcription factor-1 facilitates cerebrospinal fluid formation by regulating aquaporin-1 synthesis in the brain. J Biol Chem 282: 14923–14931

    Article  PubMed  CAS  Google Scholar 

  109. Boassa D, Stamer WD, Yool AJ (2006) Ion channel function of aquaporin-1 natively expressed in choroid plexus. J Neurosci 26: 7811–7819

    Article  PubMed  CAS  Google Scholar 

  110. Migliati E, Meurice N, DuBois P, Fang JS, Somasekharan S, Beckett E, Flynn G, Yool AJ (2009) Inhibition of aquaporin-1 and aquaporin-4 water permeability by a derivative of the loop diuretic bumetanide acting at an internal pore-occluding binding site. Mol Pharmacol 76: 105–112

    Article  PubMed  CAS  Google Scholar 

  111. Johanson CE, Foltz FM, Thompson AM (1974) The clearance of urea and sucrose from isotonic and hypertonic fluids perfused through the ventriculo-cisternal system. Exp Brain Res 20: 18–31

    Article  PubMed  CAS  Google Scholar 

  112. Davson H, Segal M (1996) Physiology of the CSF and blood-brain barriers, CRC, Boca Raton

    Google Scholar 

  113. Bradbury MW, Davson H (1964) The transport of urea, creatinine and certain monosaccharides between blood and fluid perfusing the cerebral ventricular system of rabbits. J Physiol 170: 195–211

    PubMed  CAS  Google Scholar 

  114. Flexner LB (1938) Changes in the chemistry and nature of the cerebrospinal fluid during fetal life in the pig. Am J Physiol 124: 131–135

    CAS  Google Scholar 

  115. Johanson C, Woodbury D (1974) Changes in CSF flow and extracellular space in the developing rat. In: Vernadakis A, Weiner N (eds) Drugs and the developing brain, Plenum, New York

    Google Scholar 

  116. Johanson CE, Duncan JA, Stopa EG, Baird A (2005) Enhanced prospects for drug delivery and brain targeting by the choroid plexus-CSF route. Pharm Res 22: 1011–1037

    Article  PubMed  CAS  Google Scholar 

  117. Murphy VA, Johanson CE (1985) Adrenergic-induced enhancement of brain barrier system permeability to small nonelectrolytes: choroid plexus versus cerebral capillaries. J Cereb Blood Flow Metab 5: 401–412

    PubMed  CAS  Google Scholar 

  118. Smith QR, Johanson CE (1980) Effect of carbonic anhydrase inhibitors and acidosis in choroid plexus epithelial cell sodium and potassium. J Pharmacol Exp Ther 215: 673–680

    PubMed  CAS  Google Scholar 

  119. Johanson CE (1989) Potential for pharmacological manipulation of the blood-cerebrospinal fluid barrier. In: Neuwelt E (ed) Implications of the blood-brain barrier and its manipulation: Basic science aspects, Plenum, New York

    Google Scholar 

  120. Welch K, Sadler K (1966) Permeability of the choroid plexus of the rabbit to several solutes. Am J Physiol 210: 652–660

    PubMed  CAS  Google Scholar 

  121. Szmydynger-Chodobska J, Pascale CL, Pfeffer AN, Coulter C, Chodobski A (2007) Expression of junctional proteins in choroid plexus epithelial cell lines: a comparative study. Cerebrospinal Fluid Res 4: 11

    Article  PubMed  CAS  Google Scholar 

  122. Reese TS, Feder N, Brightman MW (1971) Electron microscopic study of the blood-brain and blood-cerebrospinal fluid barriers with microperoxidase. J Neuropathol Exper Neurol 30: 137–138

    PubMed  CAS  Google Scholar 

  123. Johansson PA, Dziegielewska KM, Ek CJ, Habgood MD, Liddelow SA, Potter AM, Stolp HB, Saunders NR (2006) Blood-CSF barrier function in the rat embryo. Eur J Neurosci 24: 65–76

    Article  PubMed  CAS  Google Scholar 

  124. Rapoport SI, Pettigrew KD (1979) A heterogenous, pore-vesicle membrane model for protein transfer from blood to cerebrospinal fluid at the choroid plexus. Microvas Res 18: 105–119

    Article  CAS  Google Scholar 

  125. Kluge H, Hartmann W, Mertins B, Wieczorek V (1986) Correlation between protein data in normal lumbar CSF and morphological findings of choroid plexus epithelium: a biochemical corroboration of barrier transport via tight junction pores. J Neurol 233: 195–199

    Article  PubMed  CAS  Google Scholar 

  126. Mollgard K, Lauritzen B, Saunders NR (1979) Double replica technique applied to choroid plexus from early foetal sheep: completeness and complexity of tight junctions. J Neurocytol 8: 139–149

    Article  PubMed  CAS  Google Scholar 

  127. van Deurs B, Koehler JK (1979) Tight junctions in the choroid plexus epithelium. A freeze-fracture study including complementary replicas. J Cell Biol 80: 662–673

    Article  PubMed  Google Scholar 

  128. Bundgaard M (1984) The three-dimensional organization of tight junctions in a capillary endothelium revealed by serial-section electron microscopy. J Ultrastruct Res 88: 1–17

    Article  PubMed  CAS  Google Scholar 

  129. Liddelow SA, Dziegielewska KM, Ek CJ, Johansson PA, Potter AM, Saunders NR (2009) Cellular transfer of macromolecules across the developing choroid plexus of Monodelphis domestica. Eur J Neurosci 29: 253–266

    Article  PubMed  Google Scholar 

  130. Keir G, Thompson EJ (1986) Proteins as parameters in the discrimination between different blood-CSF barriers. J Neurol Sci 75: 245–253

    Article  PubMed  CAS  Google Scholar 

  131. Pakulski C, Drobnik L, Millo B (2000) Age and sex as factors modifying the function of the blood-cerebrospinal fluid barrier. Med Sci Monit 6: 314–318

    PubMed  CAS  Google Scholar 

  132. Aleshire SL, Hajdu I, Bradley CA, Parl FF (1985) Choroid plexus as a barrier to immunoglobulin delivery into cerebrospinal fluid. J Neurosurg 63: 593–597

    Article  PubMed  CAS  Google Scholar 

  133. Broadwell RD, Sofroniew MV (1993) Serum proteins bypass the blood-brain fluid barriers for extracellular entry to the central nervous system. Exp Neurol 120: 245–263

    Article  PubMed  CAS  Google Scholar 

  134. Yerbury JJ, Wilson MR (2010) Extracellular chaperones modulate the effects of Alzheimer’s patient cerebrospinal fluid on Abeta(1-42) toxicity and uptake. Cell Stress Chaperones 15: 115–121

    Article  PubMed  CAS  Google Scholar 

  135. Kato M, Soprano DR, Makover A, Kato K, Herbert J, Goodman DS (1986) Localization of immunoreactive transthyretin (prealbumin) and of transthyretin mRNA in fetal and adult rat brain. Differentiation 31: 228–235

    Article  PubMed  CAS  Google Scholar 

  136. Gath U, Hakvoort A, Wegener J, Decker S, Galla H (1997) Porcine choroid plexus cells in culture: expression of polarized phenotype, maintenance of barrier properties and apical secretion of CSF-components. Eur J Cell Biol 74: 68–78

    PubMed  CAS  Google Scholar 

  137. Montonen O, Aho M, Uitto J, Aho S (2001) Tissue distribution and cell type-specific expression of p120ctn isoforms. J Histochem Cytochem 49: 1487–1496

    PubMed  CAS  Google Scholar 

  138. Shi LZ, Li GJ, Wang S, Zheng W (2008) Use of Z310 cells as an in vitro blood-cerebrospinal fluid barrier model: tight junction proteins and transport properties. Toxicol In Vitro 22: 190–199

    Article  PubMed  CAS  Google Scholar 

  139. Javaheri S, Wagner KR (1993) Bumetanide decreases canine cerebrospinal fluid production. In vivo evidence for NaCl cotransport in the central nervous system. J Clin Invest 92: 2257–2261

    Article  PubMed  CAS  Google Scholar 

  140. Praetorius J (2007) Water and solute secretion by the choroid plexus. Pflugers Arch 454: 1–18

    Article  PubMed  CAS  Google Scholar 

  141. Johanson CE, Parandoosh Z, Smith QR (1985) Cl-HCO3 exchange in choroid plexus: analysis by the DMO method for cell pH. Am J Physiol 249: F478–484

    PubMed  CAS  Google Scholar 

  142. Johanson CE, Parandoosh Z, Dyas ML (1992) Maturational differences in acetazolamide-altered pH and HCO3 of choroid plexus, cerebrospinal fluid, and brain. Am J Physiol 262: R909–914

    PubMed  CAS  Google Scholar 

  143. Johanson CE, Reed DJ, Woodbury DM (1976) Developmental studies of the compartmentalization of water and electrolytes in the choroid plexus of the neonatal rat brain. Brain Res 116: 35–48

    Article  PubMed  CAS  Google Scholar 

  144. Smith QR, Johanson CE (1985) Active transport of chloride by lateral ventricle choroid plexus of the rat. Am J Physiol 249: F470–477

    PubMed  CAS  Google Scholar 

  145. Johanson CE (1984) Differential effects of acetazolamide, benzolamide and systemic acidosis on hydrogen and bicarbonate gradients across the apical and basolateral membranes of the choroid plexus. J Pharmacol Exp Ther 231: 502–511

    PubMed  CAS  Google Scholar 

  146. Millar ID, Brown PD (2008) NBCe2 exhibits a 3 HCO3(-):1 Na+ stoichiometry in mouse choroid plexus epithelial cells, Biochem Biophys Res Commun 373: 550–554

    Article  PubMed  CAS  Google Scholar 

  147. Johanson CE, Murphy VA (1990) Acetazolamide and insulin alter choroid plexus epithelial cell [Na+], pH, and volume. Am J Physiol 258: F1538–1546

    PubMed  CAS  Google Scholar 

  148. Bondy C, Chin E, Smith BL, Preston GM, Agre P (1993) Developmental gene expression and tissue distribution of the CHIP28 water-channel protein. Proc Natl Acad Sci U S A 90: 4500–4504

    Article  PubMed  CAS  Google Scholar 

  149. Praetorius J, Nielsen S (2006) Distribution of sodium transporters and aquaporin-1 in the human choroid plexus. Am J Physiol Cell Physiol 291: C59–67

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conrad E. Johanson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Johanson, C.E., Stopa, E.G., McMillan, P.N. (2011). The Blood–Cerebrospinal Fluid Barrier: Structure and Functional Significance. In: Nag, S. (eds) The Blood-Brain and Other Neural Barriers. Methods in Molecular Biology, vol 686. Humana Press. https://doi.org/10.1007/978-1-60761-938-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-938-3_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-937-6

  • Online ISBN: 978-1-60761-938-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics