Expression of Genes in Cyanobacteria: Adaptation of Endogenous Plasmids as Platforms for High-Level Gene Expression in Synechococcus sp. PCC 7002

  • Yu Xu
  • Richard M. Alvey
  • Patrick O. Byrne
  • Joel E. Graham
  • Gaozhong Shen
  • Donald A. Bryant
Part of the Methods in Molecular Biology book series (MIMB, volume 684)


Synechococcus sp. PCC 7002 is an ideal model cyanobacterium for functional genomics and biotechnological applications through metabolic engineering. A gene expression system that takes advantage of its multiple, endogenous plasmids has been constructed in this cyanobacterium. The method involves the integration of foreign DNA cassettes with selectable markers into neutral sites that can be located on any of the several endogenous plasmids of this organism. We have exploited the natural transformability and powerful homologous recombination capacity of this organism by using linear DNA fragments for transformation. This approach overcomes barriers that have made the introduction and expression of foreign genes problematic in the past. Foremost among these is the natural restriction endonuclease barrier that can cleave transforming circular plasmid DNAs before they can be replicated in the cell. We describe herein the general methodology for expressing foreign and homologous genes in Synechococcus sp. PCC 7002, a comparison of several commonly used promoters, and provide examples of how this approach has successfully been used in complementation analyses and overproduction of proteins with affinity tags.

Key words

Synechococcus Gene expression Affinity-tag Homologous recombination Cyanobacteria Transformation Plasmid 


  1. 1.
    Bryant, D. A., de Lorimier, R., Guglielmi, G., and Stevens, S. E. Jr. (1990) Structural and compositional analyses of the phycobilisomes of Synechococcus sp. PCC 7002. Analyses of the wild-type strain and a phycocyanin-less mutant constructed by interposon mutagenesis. Arch. Microbiol. 153, 550–560.PubMedCrossRefGoogle Scholar
  2. 2.
    Zhou, J., Gasparich, G. E., Stirewalt, V. L., de Lorimier, R., and Bryant, D. A. (1992) The cpcE and cpcF genes of Synechococcus sp. PCC 7002: Construction and phenotypic characterization of interposon mutants. J. Biol. Chem. 267, 16138–16145.PubMedGoogle Scholar
  3. 3.
    Shen, G. and Bryant, D. A. (1995) Characterization of a Synechococcus sp. strain PCC 7002 mutant lacking Photosystem I. Protein assembly and energy distribution in the absence of the photosystem I reaction center core complex. Photosynth. Res. 44, 51–53.CrossRefGoogle Scholar
  4. 4.
    Sakamoto, T. and Bryant, D. A. (1999) A novel nitrate/nitrite permease in the marine cyanobacterium Synechococcus sp. strain PCC 7002. J. Bacteriol. 181, 7363–7372.PubMedGoogle Scholar
  5. 5.
    Shen, G., Saunée, N. A., Williams, S. R., Gallo, E. F., Schluchter, W. M., and Bryant, D. A. (2006) Identification and characterization of a new class of bilin lyase: The cpcT gene encodes a bilin lyase responsible for attachment of phycocyanobilin to Cys-153 on the β-subunit of phycocyanin in Synechococcus sp. PCC 7002. J. Biol. Chem. 281, 17768–17778.PubMedCrossRefGoogle Scholar
  6. 6.
    Maresca, J. A., Graham, J. E., Wu, M., Eisen, J. A., and Bryant, D. A. (2007) Identification of a fourth family of lycopene cyclases in photosynthetic bacteria. Proc. Natl. Acad. Sci. U.S.A. 104, 11784–11789.PubMedCrossRefGoogle Scholar
  7. 7.
    Shen, G., Schluchter, W. M., and Bryant, D. A. (2008) Biogenesis of phycobiliproteins. I. cpcS-I and cpcU mutants of the cyanobacterium Synechococcus sp. PCC 7002 identify a heterodimeric phycocyanobilin lyase specific for β-phycocyanin and allophycocyanin subunits. J. Biol. Chem. 283, 7503–7512.PubMedCrossRefGoogle Scholar
  8. 8.
    Shen, G., Leonard, H. S., Schluchter, W. M., and Bryant, D. A. (2008) CpcM post-translationally methylates asparagine-71/72 of phycobiliprotein beta subunits in Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803. J. Bacteriol. 190, 4808–4817.PubMedCrossRefGoogle Scholar
  9. 9.
    Jin, Z., Heinnickel, M., Krebs, C., Shen, G., Golbeck, J. H., and Bryant, D. A. (2008) Biogenesis of iron-sulfur clusters in photosystem I: Holo-NfuA from the cyanobacterium Synechococcus sp. PCC 7002 rapidly and efficiently transfers [4Fe-4S] clusters to apo-PsaC in vitro. J. Biol. Chem. 283, 28426–28435.PubMedCrossRefGoogle Scholar
  10. 10.
    Graham, J. E. and Bryant, D. A. (2009) The biosynthetic pathway for the synthesis of the myxol-2′-fucoside in the cyanobacterium Synechococcus sp. strain PCC 7002. J. Bacteriol. 191, 3292–3300.PubMedCrossRefGoogle Scholar
  11. 11.
    Buzby, J. S., Porter, R. D., and Stevens, S. E., Jr. (1983) Plasmid transformation in Agmenellum quadruplicatum PR-6: Construction of biphasic plasmids and characterization of their ­transformation properties. J. Bacteriol. 154, 1446–1450.PubMedGoogle Scholar
  12. 12.
    Kimura, A., Hamada, T., Morita, E. H., and Hayashi, H. (2002) A high temperature-sensitive mutant of Synechococcus sp. PCC 7002 with modifications in the endogenous plasmid, pAQ1. Plant Cell Physiol. 43, 217–223.PubMedCrossRefGoogle Scholar
  13. 13.
    Akiyama, H., Kana, S., Hirano, M., and Miyasaka, H. (1998) Nucleotide sequences of plasmid pAQ1 of marine cyanobacterium Synechococcus sp. PCC 7002. DNA Res. 5, 127–129.PubMedCrossRefGoogle Scholar
  14. 14.
    Chen, X. and Widger, W. R. (1993) Physical genome map of the unicellular cyanobacterium Synechococcus sp. strain PCC 7002. J. Bacteriol. 175, 5106–5116.PubMedGoogle Scholar
  15. 15.
    Essich, E., Stevens, S. E., Jr., and Porter, R. D. (1990) Chromosomal transformation in the cyanobacterium Agmenellum quadruplicatum. J. Bacteriol. 172, 1916–1922.PubMedGoogle Scholar
  16. 16.
    Roberts, T. M. and Koths, K. E. (1976) The blue-green alga Agmenellum quadruplicatum contains covalently closed DNA circles. Cell 9, 551–557.PubMedCrossRefGoogle Scholar
  17. 17.
    Porter, R. D. (1986) Transformation in cyanobacteria. Crit. Rev. Microbiol. 13, 111–132.PubMedCrossRefGoogle Scholar
  18. 18.
    Frigaard, N. U., Sakuragi, Y., and Bryant, D. A. (2004) Gene inactivation in the cyanobacterium Synechococcus sp. PCC 7002 and the green sulfur bacterium Chlorobium tepidum using in vitro-made DNA constructs and natural transformation. Methods Mol. Biol. 274, 325–340.PubMedGoogle Scholar
  19. 19.
    Lambert, D. H. and Stevens, S. E., Jr. (1986) Photoheterotrophic growth of Agmenellum quadruplicatum PR-6. J. Bacteriol. 165, 654–656.PubMedGoogle Scholar
  20. 20.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  21. 21.
    Qi, Q., Hao, M., Ng, W. O., Slater, S. C., Baszis, S. R., Weiss, J. D., and Valentin, H. E. (2005) Application of the Synechococcus nirA promoter to establish an inducible expression system for engineering the Synechocystis tocopherol pathway. Appl. Environ. Microbiol. 71, 5678–5684.PubMedCrossRefGoogle Scholar
  22. 22.
    Wang, H. L., Postier, B. L., and Burnap, R. L. (2004) Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J. Biol. Chem. 279, 5739–5751.PubMedCrossRefGoogle Scholar
  23. 23.
    Clerico, E. M., Ditty, J. L., and Golden, S. S. (2007) Specialized techniques for site-directed mutagenesis in cyanobacteria. Methods Mol. Biol. 362, 155–171.PubMedCrossRefGoogle Scholar
  24. 24.
    Ghassemian, M., Wong, B., Ferreira, F., Markley, J. L., and Straus, N. A. (1994) Cloning, sequencing and transcriptional studies of the genes for cytochrome c-553 and plastocyanin from Anabaena sp. PCC 7120. Microbiology 140, 1151–1159.PubMedCrossRefGoogle Scholar
  25. 25.
    Buikema, W. J. and Haselkorn, R. (2001) Expression of the Anabaena hetR gene from a copper-regulated promoter leads to heterocyst differentiation under repressing conditions. Proc. Natl. Acad. Sci. U.S.A. 98, 2729–2734PubMedCrossRefGoogle Scholar
  26. 26.
    Stevens, S. E., Jr., Patterson, C. O. P., and Myers, J. (1973) The production of hydrogen peroxide by blue-green algae: A survey. J. Phycol. 9, 427–430Google Scholar
  27. 27.
    Shen, G., Zhao, J., Reimer, S. K., Antonkine, M. L., Cai, Q., Weiland, S. M., Golbeck, J. H., and Bryant, D. A. (2002) Assembly of Photosystem I: I. Inactivation of the rubA gene encoding a membrane-associated rubredoxin in the cyanobacterium Synechococcus sp. PCC 7002 causes a loss of photosystem I activity. J. Biol. Chem. 277, 20343–20354PubMedCrossRefGoogle Scholar
  28. 28.
    Elhai, J. and Wolk, C. P. (1988) A versatile class of positive-selection vectors base on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene 68, 119–138.PubMedCrossRefGoogle Scholar
  29. 29.
    Brand, J. J. (2003) Cryopreservation of cyanobacteria.
  30. 30.
    Bryant, D. A. and Frigaard, N.-U. (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol. 14, 488–496.PubMedCrossRefGoogle Scholar
  31. 31.
    Iwai, M., Maoka, T., Ikeuchi, M., and Takaichi, S. (2008) 2,2’-beta-hydroxylase (CrtG) is involved in carotenogenesis of both nostoxanthin and 2-hydroxymyxol 2’-fucoside in Thermosynechococcus elongatus strain BP-1. Plant Cell Physiol. 49, 1678–1687.PubMedCrossRefGoogle Scholar
  32. 32.
    Graham, J. E., Lecomte J. T. J., and Bryant, D. A. (2008) Synechoxanthin, an aromatic C40 xanthophyll that is a major carotenoid in the cyanobacterium Synechococcus sp. PCC 7002. J. Nat. Prod. 71, 1647–1650.PubMedCrossRefGoogle Scholar
  33. 33.
    Graham, J. E. and Bryant, D. A. (2008) The biosynthetic pathway for synechoxanthin, an aromatic carotenoid synthesized by the euryhaline, unicellular cyanobacterium Synechococcus sp. strain PCC 7002. J. Bacteriol. 190, 7966–7974.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yu Xu
    • 1
  • Richard M. Alvey
    • 1
  • Patrick O. Byrne
    • 1
  • Joel E. Graham
    • 1
  • Gaozhong Shen
    • 1
  • Donald A. Bryant
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations