Uptake Kinetics of Cell-Penetrating Peptides

  • Anders Florén
  • Imre MägerEmail author
  • Ülo Langel
Part of the Methods in Molecular Biology book series (MIMB, volume 683)


As our knowledge increases about the diversity in uptake mechanisms displayed by cell-penetrating peptides (CPP), the concept of CPP uptake kinetics becomes increasingly complex. Here, we present three different assays that can be used for studying different kinetic aspects of CPP-mediated delivery: intracellular accumulation and membranolytical effects, intracellular CPP-cargo detachment, and finally a functional readout of a biological action from the delivered cargo. Unlike the traditional end-point measurements that give a static postincubation readout, these assays are all dynamic, real-time, in situ measurements obtained during incubation. A combination of some (or all) of these different assays gives us not only interesting kinetic information about the uptake routes but also provides a simple and valuable methodology for the evaluation of potential drug candidates based on the chemical modification of CPPs by cargo attachment.

Key words

CPP uptake Kinetics Flow cytometry Fluorescence Bioluminescence Fluorescence quenching 



The work presented in this article was supported by: the Swedish Research Council (VR-NT); the Center for Biomem brane Research, Stockholm; the Knut and Alice Wallenberg’s Foundation; the EU through the European Regional Development Fund through the Center of Excellence in Chemical Biology, Estonia; the targeted financing SF0180027s08 from the Estonian Government; the DoRa Program of The European Social Fund; and the Archimedes Foundation.


  1. 1.
    Polyakov V., Sharma V., Dahlheimer J. L., Pica C. M., Luker G. D., Piwnica-Worms D. (2000) Novel Tat-peptide chelates for direct transduction of technetium-99m and rhenium into human cells for imaging and radiotherapy. Bioconjug Chem 11, 762–71.CrossRefPubMedGoogle Scholar
  2. 2.
    Drin G., Mazel M., Clair P., Mathieu D., Kaczorek M., Temsamani J. (2001) Physico-chemical requirements for cellular uptake of pAntp peptide. Role of lipid-binding affinity. Eur J Biochem 268, 1304–14.CrossRefPubMedGoogle Scholar
  3. 3.
    Drin G., Cottin S., Blanc E., Rees A., Temsamani J. (2003) Studies on the internalization mechanism of cationic cell-penetrating peptides. J Biol Chem 278, 31192–201.CrossRefPubMedGoogle Scholar
  4. 4.
    Suzuki T., Futaki S., Niwa M., Tanaka S., Ueda K., Sugiura Y. (2002) Possible existence of common internalization mechanisms among arginine-rich peptides. J Biol Chem 277, 2437–43.CrossRefPubMedGoogle Scholar
  5. 5.
    Richard J., Melikov K., Vives E., et al. (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278, 585–90.CrossRefPubMedGoogle Scholar
  6. 6.
    Jones S., Christison R., Bundell K., et al. (2005) Characterisation of cell-penetrating peptide-mediated peptide delivery. Br J Pharmacol 145, 1093–102.CrossRefPubMedGoogle Scholar
  7. 7.
    Li X., Higashikubo R., Taylor J. (2008) Use of multiple carboxylates to increase intracellular retention of fluorescent probes following release from cell penetrating fluorogenic conjugates. Bioconjug Chem 19, 50–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Tünnemann G., Ter-Avetisyan G., Martin R., Stöckl M., Herrmann A., Cardoso M. (2008) Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J Pept Sci 14, 469–76.CrossRefPubMedGoogle Scholar
  9. 9.
    Hällbrink M., Florén A., Elmquist A., Pooga M., Bartfai T., Langel Ü. (2001) Cargo delivery kinetics of cell-penetrating peptides. Biochim Biophys Acta 1515, 101–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Cheung J. C., Kim Chiaw P., Deber C. M., Bear C. E. (2009) A novel method for monitoring the cytosolic delivery of peptide cargo. J Control Release 137, 2–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Pooga M., Hällbrink M., Zorko M., Langel Ü. (1998) Cell penetration by transportan. FASEB J 12, 67–77.PubMedGoogle Scholar
  12. 12.
    Jones L. R., Goun E. A., Shinde R., Rothbard J. B., Contag C. H., Wender P. A. (2006) Releasable luciferin-transporter conjugates: tools for the real-time analysis of cellular uptake and release. J Am Chem Soc 128, 6526–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Wender P. A., Goun E. A., Jones L. R., et al. (2007) Real-time analysis of uptake and bioactivatable cleavage of luciferin-transporter conjugates in transgenic reporter mice. Proc Natl Acad Sci U S A 104, 10340–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Watkins C. L., Schmaljohann D., Futaki S., Jones A. T. (2009) Low concentration thresholds of plasma membranes for rapid energy-independent translocation of a cell penetrating peptide. Biochem J 420, 179–89.CrossRefPubMedGoogle Scholar
  15. 15.
    Duchardt F., Fotin-Mleczek M., Schwarz H., Fischer R., Brock R. (2007) A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 8, 848–66.CrossRefPubMedGoogle Scholar
  16. 16.
    Kosuge M., Takeuchi T., Nakase I., Jones A. T., Futaki S. (2008) Cellular internalization and distribution of arginine-rich peptides as a function of extracellular peptide concentration, serum, and plasma membrane associated proteoglycans. Bioconjug Chem 19, 656–64.CrossRefPubMedGoogle Scholar
  17. 17.
    Manceur A., Wu A., Audet J. (2007) Flow cytometric screening of cell-penetrating peptides for their uptake into embryonic and adult stem cells. Anal Biochem 364, 51–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Busetto S., Trevisan E., Patriarca P., Menegazzi R. (2004) A single-step, sensitive flow cytofluorometric assay for the simultaneous assessment of membrane-bound and ingested Candida albicans in phagocytosing neutrophils. Cytometry A 58, 201–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Laboratory of Molecular Biotechnology, Institute of TechnologyTartu UniversityTartuEstonia
  2. 2.Department of NeurochemistryStockholm UniversityStockholmSweden

Personalised recommendations