Skip to main content

Tools for Predicting Binding and Insertion of CPPs into Lipid Bilayers

  • Protocol
  • First Online:
Cell-Penetrating Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 683))

Abstract

The ability to predict properties such as peptide binding and insertion into membranes is an important and time-saving asset in the design of new cell-penetrating peptides (CPPs). Methods to predict those properties are described here, which make use of calculations performed with the Wimley–White hydrophobicity scales. In addition, electrostatic effects can be estimated in a way that provides acceptably close approximations in many cases. Finally, an estimate of the probability of insertion is also discussed. These procedures are illustrated by comparing the calculations with experiments on a few CPPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. White, S. H., and Wimley, W. C. (1999). Membrane protein folding and stability: physical principles. Annu. Rev. Biophys. Biomol. Struct. 28, 319–365.

    Article  CAS  PubMed  Google Scholar 

  2. Jaysinghe, S., Hristova, K., Wimley, W., Snider, C., and White, S. H. (2009) Membrane Protein Explorer (MPEx). http://www.blanco.biomol.uci.edu/mpex.

  3. Wimley, W. C., Creamer, T. P., and White, S. H. (1996) Solvation energies of amino acid side chains and backbone in a family of host–guest pentapeptides. Biochemistry 35, 5109–5124.

    Article  CAS  PubMed  Google Scholar 

  4. Wimley, W. C., and White, S. H. (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Biol. 3, 842–848.

    Article  CAS  PubMed  Google Scholar 

  5. Hristova, K., and White, S. H. (2005) An experiment-based algorithm for predicting the partitioning of unfolded peptides into phosphatidylcholine bilayer interfaces. Biochemistry 44, 12614–12619.

    Article  CAS  PubMed  Google Scholar 

  6. Ladokhin, A. S., and White, S. H. (1999) Folding if amphipathic α-helices on membranes: energetics of helix formation by melittin. J. Mol. Biol. 285, 1363–1369.

    Article  CAS  PubMed  Google Scholar 

  7. Wimley, W. C., Hristova, K., Ladokhin, A. S., Silvestro, L., Axelsen, P. H., and White, S. H. (1998) Folding of β-sheet membrane proteins: A hydrophobic hexapeptide model. J. Mol. Biol. 277, 1091–1110.

    Article  CAS  PubMed  Google Scholar 

  8. Wieprecht, T., Apostolov, O., Beyermann, M., and Seelig, J. (1999) Thermodynamics of the R-helix-coil transition of amphipathic peptides in a membrane environment: Implications for the peptide-membrane binding equilibrium. J. Mol. Biol. 294, 785–794.

    Article  CAS  PubMed  Google Scholar 

  9. Wieprecht, T., Apostolov, O., Beyermann, M., and Seelig, J. (2000) Interaction of a mitochondrial presequence with lipid membranes: Role of helix formation for membrane binding and perturbation. Biochemistry 39, 15297–15305.

    Article  CAS  PubMed  Google Scholar 

  10. Klocek, G., Schulthess, T., Shai, Y., and Seelig, J. (2009) Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation. Biochemistry 48, 2586–2596.

    CAS  Google Scholar 

  11. Fernandez-Vidal, M., Jayasinghe, S., Ladokhin, A. S., and White, S. H. (2007) Folding amphipathic helices into membranes: Amphiphilicity trumps hydrophobicity. J. Mol. Biol. 370, 459–470.

    Article  CAS  PubMed  Google Scholar 

  12. Almeida, P. F., and Pokorny, A. (2009) Mechanisms of antimicrobial, cytolytic, and cell-penetrating peptides: From kinetics to thermodynamics. Biochemistry 48, 8083–8093.

    Article  CAS  PubMed  Google Scholar 

  13. Jayasinghe, S., Hristova, K., and White, S. H. (2001) Energetics, stability, and prediction of transmembrane helices. J. Mol. Biol. 312, 927–934.

    Article  CAS  PubMed  Google Scholar 

  14. Kim, J., Mosior, M, Chung, L., Wu, H., and McLaughlin, S. (1991) Binding of peptides with basic residues to membranes containing acidic phospholipids. Biophys. J. 60, 135–148.

    Article  CAS  PubMed  Google Scholar 

  15. Ben-Tal, N., Honig, B., Peitzsch, R. M., Denisov, G., and McLaughlin, S. (1996) Binding of small basic peptides to membranes containing acidic lipids: theoretical models and experimental results. Biophys. J. 71, 561–575.

    Article  CAS  PubMed  Google Scholar 

  16. Murray, D., Arbuzova, A., Hangyás-Mihályné, G., Gambhir, A., Ben-Tal, N., Honig, B., and McLaughlin, S. (1999) Electrostatic properties of membranes containing acidic lipids and adsorbed basic peptides: theory and experiment. Biophys. J. 77, 3176–3188.

    Article  CAS  PubMed  Google Scholar 

  17. Mosior, M, and McLaughlin, S. (1992) Binding of basic peptides to acidic lipids in membranes: effects of inserting alanine(s) between the basic residues. Biochemistry 31, 1767–1773.

    Article  CAS  PubMed  Google Scholar 

  18. Gregory, S. M., Cavenaugh, A., Journigan, V., Pokorny, A., and Almeida, P. F. F. (2008) A quantitative model for the all-or-none permeabilization of phospholipid vesicles by the antimicrobial peptide cecropin A. Biophys. J. 94, 1667–1680.

    Article  CAS  PubMed  Google Scholar 

  19. Gregory, S. M., Pokorny, A., and Almeida, P. F. F (2009) Magainin 2 revisited: a test of the quantitative model for the all-or-none permeabilization of phospholipid vesicles. Biophys. J. 96, 116–131.

    Article  CAS  PubMed  Google Scholar 

  20. Yandek, L. E., Pokorny, A., and Almeida. P. F. F. (2008) Small changes in the primary structure of transportan 10 alter the thermodynamics and kinetics of its interaction with phospholipid vesicles. Biochemistry 47, 3051–3060.

    Article  CAS  PubMed  Google Scholar 

  21. Ladokhin, A. S., and White, S. H. (2001). Protein chemistry at membrane interfaces: non-additivity of electrostatic and hydrophobic interactions. J. Mol. Biol. 309, 543–552.

    Article  CAS  PubMed  Google Scholar 

  22. Persson, D., Thorén, P. E., Herner, M., Lincoln, P., Nordén, B. (2003) Application of a novel analysis to measure the binding of the membrane-translocating peptide penetratin to negatively charged liposomes. Biochemistry 42, 421–429.

    Article  CAS  PubMed  Google Scholar 

  23. Thorén, P. E. G., Persson, D., Esbjorner, E. K., Goksor, M., Lincoln, P., and Nordén, B. (2004) Membrane binding and translocation of cell-penetrating peptides. Biochemistry 43, 3471–3489.

    Article  PubMed  Google Scholar 

  24. Ziegler, A., Blatter, X. L., Seelig, A., and Seelig, J. (2003) Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Biochemistry 42, 9185–9194.

    Article  CAS  PubMed  Google Scholar 

  25. Yandek, L. E., Pokorny, A., Florén, A., Knoelke, K., Langel, U., and Almeida, P. F. F. (2007) Mechanism of the cell-penetrating peptide transportan 10 permeation of lipid bilayers. Biophys. J. 92, 2434–2444.

    Article  CAS  PubMed  Google Scholar 

  26. Magzoub, M., Eriksson, L. E. G., and Gräslund, A. (2002) Conformational states of the cell-penetrating peptide penetratin when interacting with phospholipid vesicles: effects of surface charge and peptide concentration. Biochim. Biophys. Acta 1563, 53–63.

    Article  CAS  PubMed  Google Scholar 

  27. Binder, H., and Lindblom, G. (2003) Charge-dependent translocation of the trojan peptide penetratin across lipid membranes. Biophys. J. 85, 982–995.

    Article  CAS  PubMed  Google Scholar 

  28. Tanford, C. (1991). The hydrophobic effect: formation of micelles and biological membranes. 2nd Ed., Krieger, Malabar, FL.

    Google Scholar 

  29. Mitchell, D. J., Kim, D. T., Steinman, L., Fathman, C. G., and Rothbard, J. B. (2000) Polyarginine enters cell more efficiently than other polycationic homopolymers. J. Pept. Res. 56, 318–325.

    Article  CAS  PubMed  Google Scholar 

  30. Sakai, N., and Matile, S. (2003) Anion-mediated transfer of polyarginine across liquid and bilayer membranes. J. Am. Chem. Soc. 125, 14348–14356.

    Article  CAS  PubMed  Google Scholar 

  31. Sakai, N., Takeuchi, T., Futaki, S., and Matile, S. (2005) Direct observation of anion mediated translocation of fluorescent oligoarginine carriers into and across bulk liquid and anionic bilayer membranes. ChemBioChem 6, 114–122.

    Article  CAS  PubMed  Google Scholar 

  32. Rothbard, J. B., Jessop, T. C., Lewis, R. S., Murray, B. A., and Wender, P. A. (2004) Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J. Am. Chem. Soc. 126, 9506–9507.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grant No. GM072507. I thank Steve White and Bill Wimley for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Almeida, P.F. (2011). Tools for Predicting Binding and Insertion of CPPs into Lipid Bilayers. In: Langel, Ü. (eds) Cell-Penetrating Peptides. Methods in Molecular Biology, vol 683. Humana Press. https://doi.org/10.1007/978-1-60761-919-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-919-2_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-918-5

  • Online ISBN: 978-1-60761-919-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics