NMR Studies of Three-Dimensional Structure and Positioning of CPPs in Membrane Model Systems

  • Lena Mäler
  • Astrid Gräslund
Part of the Methods in Molecular Biology book series (MIMB, volume 683)


CPPs are generally short cationic peptides that have the capability to interact directly with membranes. Most CPPs attain a three-dimensional structure when interacting with bilayers, while they are more or less unstructured in aqueous solution. To understand the relationship between structure and the effect that CPPs have on membranes, it is of great importance to investigate CPPs with atomic resolution in a suitable membrane model. Nuclear magnetic resonance (NMR) is an excellent technique both for studying solution structures of peptides as well as for investigating their location within a model bilayer. This chapter outlines protocols for producing model membrane systems for NMR investigations as well as the basic NMR tools for determining the three-dimensional structure of CPPs and for investigating the details in lipid–peptide interactions, i.e., the localization of the CPP in the bilayer.

Key words

CPP Micelle Bicelle Membrane Bilayer Phospholipid Nuclear magnetic resonance Structure 



The work presented in this chapter was supported by grants from the Swedish Research Council, the Center for Biomembrane Research, and the Carl Trygger Foundation. We thank Dr. Jesper Lind for assistance in producing the figures.


  1. 1.
    Gräslund, A. and Eriksson, L.E.G. (2002) Biophysical studies of cell-penetrating peptides. In Cell penetrating peptides: processes and applications. Ed. Langel, Ü. CRC, Boca Raton, 223–244.Google Scholar
  2. 2.
    Magzoub, M., Oglecka, K., Pramanik, A., Eriksson, L.E.G., and Gräslund, A. (2005) Membrane perturbation effects of peptides derived from the N-termini of unprocessed prion proteins Biochim. Biophys. Acta 15 126–136.Google Scholar
  3. 3.
    Saar, K., Lindgren, M., Hansen, M., Eiriksdottir, E., Jiang, Y., Rosenthal-Aizman, K., Sassian, M., and Langel, Ü. (2005) Cell-penetrating peptides: a comparative membrane toxicity study Anal. Biochem. 345 55–65.CrossRefPubMedGoogle Scholar
  4. 4.
    Mäler, L. and Gräslund, A. (2009) Artificial membrane models for the study of macromolecular delivery Methods Mol. Biol. 480 129–139.PubMedGoogle Scholar
  5. 5.
    Sanders, C.R. and Prestegard, J.H. (1990) Magnetically orientable phospholipid bilayers containing small amounts of a bile salt analogue, CHAPSO Biophys. J. 58 447–460.CrossRefPubMedGoogle Scholar
  6. 6.
    Vold, R.R., Prosser, S.R., and Deese, A.J. (1997) Isotropic solutions of phospholipid bicelles: a new membrane mimetic for high-resolution NMR studies of polypeptides J. Biomol. NMR 9 329-335.CrossRefPubMedGoogle Scholar
  7. 7.
    Sanders, C.R. and Prosser, R.S. (1998) Bicelles: a model membrane system for all seasons? Structure 6 1227–1234.CrossRefPubMedGoogle Scholar
  8. 8.
    Chou, J.J., Baber, J.L., and Bax, A. (2004) Characterization of phospholipid mixed micelles by translational diffusion J. Biomol. NMR 29 299–308.CrossRefPubMedGoogle Scholar
  9. 9.
    Andersson, A. and Mäler, L. (2005) Magnetic resonance investigations of lipid motion in isotropic bicelles Langmuir 21 7702–7709.CrossRefPubMedGoogle Scholar
  10. 10.
    Marcotte, I. and Auger, M. (2005) Bicelles as model membranes for solid- and solution-state NMR studies of membrane peptides and proteins, Concepts Magn. Reson. 24A 17–37.CrossRefGoogle Scholar
  11. 11.
    Prosser, R.S., Evanics, F., Kitevski, J.L., and Al-Abdul-Wahid, M.S. (2006) Current applications of bicelles in NMR studies of membrane-associated amphiphiles and proteins Biochemistry 45 8453–8465.CrossRefPubMedGoogle Scholar
  12. 12.
    Damberg, P., Jarvet J., and Gräslund, A. (2001) Micellar systems as solvents in peptide and protein structure determination Methods Enzymol. 339 271–285.CrossRefPubMedGoogle Scholar
  13. 13.
    Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids. Wiley-Interscience, New York.Google Scholar
  14. 14.
    Cavanagh, J., Fairbrother, W.J., Palmer, A.G., Rance, M., and Skelton, N.J. (2007) Protein NMR Spectroscopy. Principles and Practice. Academic, San Diego.Google Scholar
  15. 15.
    Pervushin, K., Riek, R., Wider, G., and Wüthrich, K. (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole couplings and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution Proc. Natl. Acad. Sci. USA 94 12366–12371.CrossRefPubMedGoogle Scholar
  16. 16.
    Tamm, L.K. and Liang, B. (2006) NMR of membrane proteins in solution Prog. Nucl. Magn. Reson. Spectrosc. 48 201–210.CrossRefGoogle Scholar
  17. 17.
    Lindberg, M. and Gräslund, A. (2001) The position of the cell penetrating peptide penetratin in SDS micelles determined by NMR FEBS Lett. 497 39–44.CrossRefPubMedGoogle Scholar
  18. 18.
    Lindberg, M., Jarvet, J., Langel, Ü., and Gräslund, A. (2001) Secondary structure and position of the cell-penetrating peptide transportan in SDS micelles as determined by NMR Biochemistry 40 3141–3149.CrossRefPubMedGoogle Scholar
  19. 19.
    Lindberg, M., Biverståhl, H., Gräslund, A., and Mäler, L. (2003) Structure and positioning comparison of two variants of penetratin in two different membrane mimicking systems by NMR Eur. J. Biochem. 270 3055–3063.CrossRefPubMedGoogle Scholar
  20. 20.
    Andersson, A., Almqvist, J., Hagn F., and Mäler, L. (2004) Diffusion and dynamics of penetratin in different membrane mimicking media Biochim. Biophys. Acta 1661 18–26.CrossRefPubMedGoogle Scholar
  21. 21.
    Bárány-Wallje, E., Andersson, A., Gräslund, A., and Mäler, L. (2004) NMR solution structure and position of transportan in neutral phospholipid bicelles FEBS Lett. 567 265–269.CrossRefPubMedGoogle Scholar
  22. 22.
    Biverståhl, H., Andersson, A., Gräslund, A., and Mäler, L. (2004) NMR solution structure and membrane interaction studies of the N-terminal sequence (1-30) of the bovine prion protein Biochemistry 43 14940–14947.CrossRefPubMedGoogle Scholar
  23. 23.
    Bárány-Wallje, E., Andersson, A., Gräslund, A., and Mäler, L. (2006) Dynamics of transportan in bicelles is surface charge dependent J. Biomol. NMR 35 137–147.CrossRefPubMedGoogle Scholar
  24. 24.
    Aue, W.P., Bartholdi, E., and Ernst, R.R. (1976) Two-dimensional spectroscopy. Applications to nuclear magnetic resonance J. Chem. Phys. 64 2229–2246.CrossRefGoogle Scholar
  25. 25.
    Braunschweiler, L. and Ernst, R.R., (1983) Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J. Magn. Reson. 53 521–528.Google Scholar
  26. 26.
    Jeener, J., Meier, B.H., Bachmann, P., and Ernst. R.R. (1979) Investigation of exchange processes by two-dimensional NMR spectroscopy J. Chem. Phys. 71 4546–4553CrossRefGoogle Scholar
  27. 27.
    Lakowicz, J.R. (1999) Principles of Fluorescence Spectroscopy. Kluwer Academic, New York.Google Scholar
  28. 28.
    Chattopadhyay A. and London, E. (1987) Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids Biochemistry 26 39–45.CrossRefPubMedGoogle Scholar
  29. 29.
    Abrams, F.S. and London, E. (1993) Extension of the parallax analysis of membrane penetration depth to the polar region of model membranes: use of fluorescence quenching by a spin-label attached to the phospholipid polar headgroup Biochemistry 32 10826–10831.CrossRefPubMedGoogle Scholar
  30. 30.
    Mayer, M. and Meyer, B. (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor J. Am. Chem. Soc. 123 6108–6117.CrossRefPubMedGoogle Scholar
  31. 31.
    Kessler, H., Mronga, S., and Gemmecker, G. (1991) Multi-dimensional NMR experiments using selective pulses Magn. Reson. Chem. 29 527–557.CrossRefGoogle Scholar
  32. 32.
    Piantini, U., Sorensen, O.W., and Ernst, R.R. (1982) Multiple quantum filters for elucidating NMR coupling networks J. Am. Chem. Soc. 104 6800–6801.CrossRefGoogle Scholar
  33. 33.
    Hwang, T.-L. and Shaka, A. J. (1995) Water suppression that works. Excitation sculpting using arbitrary waveforms and pulsed field gradients J. Magn. Reson. 112 275–279.CrossRefGoogle Scholar
  34. 34.
    Piotto, M., Saudek, V., and Sklenář, V. (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions J. Biomol. NMR 2 661–665.CrossRefPubMedGoogle Scholar
  35. 35.
    Wang, J., Schnell, J. R., and Chou, J. J. (2004) Amantadine partition and localization in phospholipid membrane: a solution NMR study Biochem. Biophys. Res. Commun. 324 212–217.CrossRefPubMedGoogle Scholar
  36. 36.
    Glover, K.J., Whiles, J.A., Wu, G., Yu, N.-J., Deems, R., Struppe, J.O., Stark, R.E., Komives, E.A., and Vold. R.R. (2001) Structural evaluation of phospholipid bicelles for solution-state studies of membrane-associated biomolecules Biophys. J. 81 2163–2171.CrossRefPubMedGoogle Scholar
  37. 37.
    Lind, J., Nordin, J., and Mäler, L. (2008) Lipid dynamics in fast-tumbling bicelles with varying bilayer thickness: effect of model transmembrane peptides Biochim. Biophys. Acta 1778 256–2534.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Lena Mäler
    • 1
  • Astrid Gräslund
    • 1
  1. 1.Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden

Personalised recommendations