Therapeutic Applications of Cell-Penetrating Peptides

  • Randolph M. Johnson
  • Stephen D. Harrison
  • Derek Maclean
Part of the Methods in Molecular Biology book series (MIMB, volume 683)


Since the discovery over 15 years ago of a protein transcription factor that possessed the ability to cross the plasma membrane, cell-penetrating peptides (CPPs) have been evaluated for the ability to transport diverse cargoes into cells, tissues, and organs. Certain CPPs have been used for the intracellular delivery of information-rich molecules to modulate protein–protein interactions and thereby inhibit key cellular mechanisms of disease. The ability to introduce drugs into cells allows the conventional biodistribution of drugs to be altered in order to favorably impact toxicity, patient compliance, and other treatment factors.

In this monograph, we present the current status and future prospects for the application of CPPs to the development of human therapeutics. We discuss some of the advantages and disadvantages of using CPPs in the in vivo setting, and review the current status of a number of preclinical and human clinical studies of CPP-mediated delivery of therapeutics. These include CPP-conjugated moieties directed against a growing variety of targets and disease areas, including cancer, cardiology, pain, and stroke. Our discussion focuses on those therapeutics that have been tested in humans, including a CPP conjugate for the treatment of acute myocardial infarction. The promising results obtained in a number of these studies indicate that CPPs may have an important role in the development of novel therapeutics.

Key words

Cell-penetrating peptides TAT Protein kinase C isozymes PKC Drug discovery Drug development Pain Cardioprotection Neuroprotection 


  1. 1.
    Daly, N.L., Rosengren, K.J., and Craik, D.J. (2009) Discovery, structure and biological activities of cyclotides. Adv. Drug Deliv. Rev. 61(11), 918–930.CrossRefPubMedGoogle Scholar
  2. 2.
    Walensky, L.D., Kung, A.L., Escher, I., Malia, T.J., Barbuto, S., Wright, R.D.,Wagner, G., Verdine, G.L., and Korsmeyer, S.J. (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470.CrossRefPubMedGoogle Scholar
  3. 3.
    Gump, J.M., and Dowdy, S.F. (2007) TAT transduction: the molecular mechanism and therapeutic prospects. Trends Mol. Med. 13, 443–448.CrossRefPubMedGoogle Scholar
  4. 4.
    Chen, L., and Harrison, S.D. (2007) Cell-penetrating peptides in drug development: enabling intracellular targets. Biochem. Soc. Trans. 35, 821–825.CrossRefPubMedGoogle Scholar
  5. 5.
    Prochiantz, A. (2008) Protein and peptide transduction, twenty years later a happy birthday. Adv. Drug Deliv. Rev. 60, 448–451.CrossRefPubMedGoogle Scholar
  6. 6.
    Torchilin, V.P. (2008) Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv. Drug Deliv. Rev. 60, 548–558.CrossRefPubMedGoogle Scholar
  7. 7.
    Wender, P.A., Galliher, W.C., Goun, E.A., Jones, L.R., and Pillow, T.H. (2008) The design of guanidinium-rich transporters and their internalization mechanisms. Adv. Drug Deliv. Rev. 60, 452–472.CrossRefPubMedGoogle Scholar
  8. 8.
    Frankel, A.D., Bredt, D.S., and Pabo, C.O. (1988) Tat protein from human immunodeficiency virus forms a metal-linked dimer. Science 240, 70–73.CrossRefPubMedGoogle Scholar
  9. 9.
    Joliot, A., Pernelle, C., Deagostini-Bazin, H., and Prochiantz, A. (1991) Antennapedia homeobox peptide regulates neural morphogenesis. Proc. Natl. Acad. Sci. U.S.A. 88, 1864–1868.CrossRefPubMedGoogle Scholar
  10. 10.
    Fawell, S., Seery, J., Daikh, Y., Moore, C., Chen, L.L., Pepinsky, B., and Barsoum, J. (1994) Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. U.S.A. 91, 664–668.CrossRefPubMedGoogle Scholar
  11. 11.
    Derossi, D., Joliot, A.H., Chassaing, G., and Prochiantz, A. (1994) The third helix of the antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10444–10450.PubMedGoogle Scholar
  12. 12.
    Vives, E., Brodin, P., and Lebleu, B. (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010–16017.CrossRefPubMedGoogle Scholar
  13. 13.
    Schwarze, S.R., Ho, A., Vocero-Akbani, A., and Dowdy, S.F. (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569–1572.CrossRefPubMedGoogle Scholar
  14. 14.
    Futaki, S., Suzuki, T., Ohashi, W., Yagami, T., Tanaka, S., Ueda, K., and Sugiura, Y. (2001) Arginine-rich peptides: an abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 276, 5836–5840.CrossRefPubMedGoogle Scholar
  15. 15.
    Jones, S.W., Christison, R., Bundell, K., Voyce, C.J., Brockbank, S.M.V., Newham, P., and Lindsay, M.A. (2005) Characterisation of cell-penetrating peptide-mediated peptide delivery. Br. J. Pharmacol. 145, 1093–1102.CrossRefPubMedGoogle Scholar
  16. 16.
    Chen, L., Wright, L.R., Chen, C.-H., Oliver, S.F., Wender, P.A., Mochly-Rosen, D. (2001) Molecular transporters for peptides: delivery of a cardioprotective εPKC agonist peptide into cells and intact ischemic heart using a transport system, R7. Chem. Biol. 8, 1123–1129.CrossRefPubMedGoogle Scholar
  17. 17.
    Wender, P.A., Mitchell, D.J., Pattabiraman, K., Pelkey, E.T., Steinman, L., and Rothbard, J.B. (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc. Natl. Acad. Sci. U.S.A. 97, 13003–13008.CrossRefPubMedGoogle Scholar
  18. 18.
    Richard, J.P., Melikov, K., Brooks, H., Prevot, P., Lebleu, B., and Chernomordik, L.V. (2005) Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparin sulfate receptors. J. Biol. Chem. 280, 15300–15306.CrossRefPubMedGoogle Scholar
  19. 19.
    Potocky, T.B., Menon, A.K., and Gellman, S.H. (2003) Cytoplasmic and nuclear delivery of a TAT-derived peptide and a b-peptide after endocytic uptake into HeLa cells. J. Biol. Chem. 278, 50188–50194.CrossRefPubMedGoogle Scholar
  20. 20.
    Fittipaldi, A., Ferrari, A., Zoppe, M., Arcangeli, C., Pellegrini, V., Beltram, F., and Giacca, M. (2003) Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J. Biol. Chem. 278, 34141–34149.CrossRefPubMedGoogle Scholar
  21. 21.
    Console, S., Marty, C., Garcia-Echeverria, C., Schwendener, R., and Ballmer-Hofer, K. (2003) Antennapedia and HIV transactivator of transcription (TAT) “protein transduction domains” promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J. Biol. Chem. 278, 35109–35114.CrossRefPubMedGoogle Scholar
  22. 22.
    Richard, J.P., Melikov, K., Brooks, H., Prevot, P., Lebleu, B., and Chernomordik, L.V. (2005) Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparin sulfate receptors. J. Biol. Chem. 280, 15300–15306.CrossRefPubMedGoogle Scholar
  23. 23.
    Mai, J.C., Shen, H., Watkins, S.C., Cheng, T., and Robbins, P.D. (2002) Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. J. Biol. Chem. 277, 30208–30218.CrossRefPubMedGoogle Scholar
  24. 24.
    Tyagi, M., Rusnati, M., Presta, M., and Giacca, M. (2001) Internalization of HIV-1 Tat requires cell surface heparan sulfate proteoglycans. J. Biol. Chem. 276, 3254–3261.CrossRefPubMedGoogle Scholar
  25. 25.
    Sandgren, S., Cheng, F., and Belting, M. (2002) Nuclear targeting of macromolecular polyanions by an HIV-Tat derived peptide: role for cell-surface proteoglycans. J. Biol. Chem. 277, 38877–38883.CrossRefPubMedGoogle Scholar
  26. 26.
    Fischer, R., Kohler, K., Fotin-Mleczek, M., and Brock, R. (2004) A stepwise dissection of the intracellular fate of cationic cell-penetrating peptides. J. Biol. Chem. 279, 12625–12635.CrossRefPubMedGoogle Scholar
  27. 27.
    Hirt, L., Badaut, J., Thevenet, J., Granziera, C., Regli, L., Maurer, F., Bonny, C.,and Bogousslavsky, J. (2004) D-JNKI1, A cell-penetrating c-jun-N-terminal kinase inhibitor, protects against cell death in severe cerebral ischemia. Stroke 35, 1738–1743.CrossRefPubMedGoogle Scholar
  28. 28.
    Miao, F. J.-P., Mohammad, H.K., Velazquez, K.T., Harrison, S.D., and Sweitzer, S.M. (2008) KAI-1678, a novel inhibitor of protein kinase C epsilon, attenuates hyperalgesia and allodynia in three neuropathic pain models in rodents. Soc. Neurosci. (Abs.) 774.10.Google Scholar
  29. 29.
    Velazquez, K.T., Miao, F.J.P., Mohammad, H.K., Ogden, C.J., Harrison, S.D., and Sweitzer, S.M. (2008) KAI-1678, a novel inhibitor of protein kinase C epsilon, attenuates mechanical hyperalgesia in rodent models of acute nociceptive, inflammatory and post-surgical pain. Soc. Neurosci. (Abs.) 468.16.Google Scholar
  30. 30.
    Inagaki, K., Chen, L., Ikeno, F., Lee, F.H., Imahashi, K., Bouley, D.M., Rezaee, M., Yock, P.G., Murphy, E., Mochly-Rosen, D. (2003) Inhibition of δ-protein kinase C protects against reperfusion injury of the ischemic heart in vivo. Circulation 108, 2304–2307.CrossRefPubMedGoogle Scholar
  31. 31.
    Sho, E., Dong, J., Jin, Z., Begley, R., Chen, L., Harrison, S.D., and Mendel, D.B. (2008) Protein kinase C-δ inhibitor protects against ischemic stroke by inhibiting cellular injury and inflammation and promoting astrocyte proliferation. Int. Stroke Conf. Abstr. 39, P422, 671–672.Google Scholar
  32. 32.
    Direct inhibition of δ-protein kinase C enzyme to limit total infarct size in acute myocardial infarction (DELTA MI) investigators. (2008) Intracoronary KAI-9803 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction. Circulation 117, 886–896.CrossRefGoogle Scholar
  33. 33.
    Liu, X. J., Gingrich, J.R., Vargas-Caballero, M., Dong, Y.N., Sengar, A., Beggs, S., Wang, S.-H., Ding, H.K., Frankland, P.W., and Salter, M.W. (2008) Treatment of inflammatory and neuropathic pain by uncoupling Src from the NMDA receptor complex. Nat. Med. 14, 1325–1332.CrossRefPubMedGoogle Scholar
  34. 34.
    Sweitzer, S.M., Mohammad, H.K., Velasquez, K.T., and Harrison, S.D. (2007) Inhibition of protein kinase C epsilon translocation reduces allodynia and hyperalgesia in a rodent model of neuropathic pain. Soc. Neurosci. (Abs.) 185.2.Google Scholar
  35. 35.
    Velazquez, Κ.Τ., Mohammad, Η.Κ., Harrison, S.D., and Sweitzer, S.M. (2007) Α small peptide inhibitor of γPKC translocation attenuates allodynia and hyperalgesia in a rodent model of neuropathic pain. Soc. Neurosci. (Abs.) 185.4.Google Scholar
  36. 36.
    Rothbard, J.B., Garlington, S., Lin, Q., Kirschberg, T., Kreider, E., McGrane, P.L., Wender, P.A., and Khavari, P.A. (2000) Conjugation of arginine oligomers to cyclosporine A facilitates topical delivery and inhibition of inflammation. Nat. Med. 6, 1253–1257.CrossRefPubMedGoogle Scholar
  37. 37.
    Begley, R., Liron, T., Baryza, J., and Mochly-Rosen, D. (2004) Biodistribution of intracellularly-acting peptides conjugated reversibly to Tat. Biochem. Biophys. Res. Commun. 318, 949–954.CrossRefPubMedGoogle Scholar
  38. 38.
    Toro, A., and Grunebaum, E. (2006) TAT-mediated intracellular delivery of purine nucleoside phosphorylase corrects its deficiency in mice. J. Clin. Invest. 116, 2717–2726.CrossRefPubMedGoogle Scholar
  39. 39.
    Covic, L., Gresser, A.L., Talavera, J., Swift, S., and Kuliopulos, A. (2002) Activation and inhibition of G protein-coupled receptors by cell-penetrating membrane-tethered peptides. Proc. Natl. Acad. Sci. U S.A. 99, 643–648.CrossRefPubMedGoogle Scholar
  40. 40.
    Chen, L., Hahn, H., Wu, G., Chen, C.-H., Liron, T., Schechtman, D., Cavallaro, G., Banci, L., Guo, Y., Bolli, R., Dorn II, G.W., and Mochly-Rosen, D. (2001) Opposing cardioprotective actions and parallel hypertrophic effects of δPKC and εPKC. Proc. Natl. Acad. Sci. U S.A. 98, 11114–11119.CrossRefPubMedGoogle Scholar
  41. 41.
    Asoh, S., Ohsawa, I., Mori, T., Katsura, K., Hiraide, T., Katayama, Y., Kimura, M., Ozaki, D., Yamagata, K., and Ohta, S. (2002) Protection against ischemic brain injury by protein therapeutics. Proc. Natl. Acad. Sci. U.S.A. 99, 17107–17112.CrossRefPubMedGoogle Scholar
  42. 42.
    Cao, G., Pei, W., Ge, H., Liang, Q., Luo, Y., Sharp, F.R., Lu, A., Ran, R., Graham, S.H., and Chen, J. (2002) In vivo delivery of a Bcl-xL fusion protein containing TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis. J. Neurosci. 22, 5423–5431.PubMedGoogle Scholar
  43. 43.
    Bright, R., Raval, A.P., Dembner, J.M., Perez-Pinzon, M.A., Steinberg, G.K., Yenari, M.A., and Mochly-Rosen, D. (2004) Protein kinase C δ mediates cerebral reperfusion injury in vivo. J. Neurosci. 24, 6880–6888.CrossRefPubMedGoogle Scholar
  44. 44.
    Dietz, G.P.H., and Bohr, M. (2004) Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol. Cell. Neurosci. 27(2), 85–131.CrossRefPubMedGoogle Scholar
  45. 45.
    Foerg, C., and Merkle, HP. (2008) On the biomedical promise of cell penetrating peptides: limits versus prospects. J. Pharm. Sci. 97, 144–162CrossRefPubMedGoogle Scholar
  46. 46.
    Mochly-Rosen, D. (1995) Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science 268, 247–251.CrossRefPubMedGoogle Scholar
  47. 47.
    Mochly-Rosen, D., and Gordon, A.S. (1998) Anchoring proteins for protein kinase C: a means for isozyme selectivity. FASEB J. 12, 35–42.PubMedGoogle Scholar
  48. 48.
    Asoh, S., Ohtsu, T., Ohta, S. (2000) The super anti-apoptotic factor Bcl-xFNK constructed by disturbing intramolecular polar interactions in rat Bcl-xL. J. Biol. Chem. 275, 37240–37245.CrossRefPubMedGoogle Scholar
  49. 49.
    Inagaki, K., Hahn, H.S., Dorn II, G.W., and Mochly-Rosen, D. (2003) Additive protection of the ischemic heart ex vivo by combined treatment with δ-protein kinase C inhibitor and ε-protein kinase C activator. Circulation 108, 869–875.CrossRefPubMedGoogle Scholar
  50. 50.
    Sivaraman, V., Hausenloy, D.J., Kolvekar, S., Hayward, M., Lawrence, D., Yap, J., Di Salvo, C., and Yellon, D.M. (2009) The divergent roles of protein kinase C epsilon and delta in simulated ischaemia-reperfusion injury in human myocardium. J. Mol Cell. Cardiol. 46, 758–764.CrossRefPubMedGoogle Scholar
  51. 51.
    Sho, E., Dong, J., Jin, Z., Lee, Y.S., Harrison, S., and Mendel, D. (2008) Protein kinase C-δ inhibitor protects against acute myocardial infarction by intravenous administration in different periods of cardiac ischemia-reperfusion. J. Am. Coll. Cardiol. Suppl. A 51(10), 1003–1086, A188CrossRefGoogle Scholar
  52. 52.
    Bian, J., Popovic, Z.B., Benejam, C., Kiedrowski, M., Rodriguez, L.L., and Penn, M.S. (2007) Effect of cell-based intracellular delivery of transcription factor GATA4 on ischemic cardiomyopathy. Circ. Res. 100, 1626–1633.CrossRefPubMedGoogle Scholar
  53. 53.
    Basbaum, A.I., and Julius, D. (2006) Toward better pain control. Sci. Am. 294(6), 61–67.CrossRefGoogle Scholar
  54. 54.
    Woolf, C.J., and Mannion, R.J. (1999) Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 353, 1959–1964.CrossRefPubMedGoogle Scholar
  55. 55.
    Sweitzer, S. M., Wong, S.M.E., Peters, M.C., Mochly-Rosen, D., Yeomans, D.C., and Kendig, J.J. (2004) Protein kinase C ε and γ: involvement in formalin-induced nociception in neonatal rats. J. Pharmacol. Exp. Ther. 309, 616–625.CrossRefPubMedGoogle Scholar
  56. 56.
    Shumilla, J.A., Liron, T., Mochly-Rosen, D., Kendig, J.J., and Sweitzer, S. M. (2005) Ethanol withdrawal-associated allodynia and hyperalgesia: age-dependent regulation by protein kinase Cε and γ isozymes. J. Pain 6, 535–549.CrossRefPubMedGoogle Scholar
  57. 57.
    Smith, F.L., Gabra, B.H., Smith, P.A., Redwood, M.C., and Dewey, W.L. (2007) Determination of the role of conventional, novel and atypical PKC isoforms in the expression of morphine tolerance in mice. Pain 127, 129–139.CrossRefPubMedGoogle Scholar
  58. 58.
    Sweitzer, S.M., Wong, S.M.E., Tjolsen, A., Allen, C.P., Mochly-Rosen, D., and Kendig, J.J. (2004) Exaggerated nociceptive responses on morphine withdrawal: roles of protein kinase C ε and γ. Pain 110, 281–289.CrossRefPubMedGoogle Scholar
  59. 59.
    Michiue, H., Tomizawa, K., Matsushita, M., Tamiya, T., Lu, Y.F., Ichikawa, T., Date, I., and Matsui, H. (2005) Ubiquitination-resistant p53 protein transduction therapy facilitates anti-cancer effect on the growth of human malignant glioma cells. FEBS Lett. 579, 3965–3969.CrossRefPubMedGoogle Scholar
  60. 60.
    Snyder, E.L., Meade, B.R., Saenz, C.C., and Dowdy, S.F. (2004) Treatment of terminal peritoneal carcinomatosis by a transducible p53-activating peptide. PLoS Biol. 2, 186–193.CrossRefGoogle Scholar
  61. 61.
    Yoshiji, H., Kuriyama, S., Ways, D.K., Yoshii, J., Miyamoto, Y., Kawata, M., Ikenaka, Y., Tsujinoue, H., Nakatani, T., Shibuya, M., and Fukui, H. (1999) Protein kinase C lies on the signaling pathway for vascular endothelial growth factor-mediated tumor development and angiogenesis. Cancer Res. 59, 4413–4418.PubMedGoogle Scholar
  62. 62.
    Kim, J., Choi, Y.-L., Vallentin, A., Hunrichs, B.S., Hellerstein, M.K., Peehl, D.M., and Mochly-Rosen, D. (2008) Centrosomal PKCβII and pericentrin are critical for human prostate cancer growth and angiogenesis. Cancer Res. 68(16), 6831–6839.CrossRefPubMedGoogle Scholar
  63. 63.
    Meyer-Losic, F., Quinonero, J., Dubois, V., Alluis, B., Dechambre, M., Michel, M., Callier, F., Fernandez, A.-M., Trouet, A., and Kearsey, J. (2006) Improved therapeutic efficacy of doxorubicin through conjugation with a novel peptide drug delivery technology (Vectocell). J. Med. Chem. 49(23), 6908–6916.CrossRefPubMedGoogle Scholar
  64. 64.
    Meyer-Losic, F., Nicolazzi, C., Quinonero, J., Ribes, F., Michel, M., Dubois, V., de Coupade, C., Boukaissi, M., Chene, A.-S., Tranchant, I., Arranz, V., Zoubaa, I., Fruchart, J.-S., Ravel, D., and Kearsey, J. (2008) DTS-108, a novel peptidic prodrug of SN38: in vivo efficacy and toxicokinetic studies. Clin. Cancer Res. 14(7), 2145–2153.CrossRefPubMedGoogle Scholar
  65. 65.
    Roe, M.T., Ohman, E.M., Maas, A.C.P., Christenson, R.H., Mahaffey, K.W., Granger, C.B., Harrington, R.A., Califf, R.M., and Krucoff, M.W. (2001) Shifting the open artery hypothesis downstream: the quest for optimal reperfusion. J. Am. Coll. Cardiol. 37, 9–18.CrossRefPubMedGoogle Scholar
  66. 66.
    Wang, J., Van De Water, T.R., Bonny, C., de Ribaupierre, F., Puel, J.L., and Zine, A. (2003) A peptide inhibitor of c-jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. J. Neurosci. 23, 8596–8607.PubMedGoogle Scholar
  67. 67.
    Glogau, R.G. (2007) Topically applied botulinum toxin type A for the treatment of primary axillary hyperhidrosis: results of a randomized, blinded vehicle-contolled study. Dermatol. Surg. 33, S76–S80.CrossRefPubMedGoogle Scholar
  68. 68.
    Lopes, L.B., Furnish, E.J., Komalavilas, P., Flynn, C.R., Ashby, P., Hansen, A., Ly, D.P., Yang, G.P., Longaker, M.T., Panitch, A., and Brophy, C.M. (2009) Cell permeant peptide analogues of the small heat shock protein, HSP20, reduce TGF-β1-induced CTGF expression in keloid fibroblasts. J. Invest. Dermatol. 129, 590–598.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Randolph M. Johnson
    • 1
  • Stephen D. Harrison
    • 2
  • Derek Maclean
    • 2
  1. 1.Vice President and Chief of Technology DevelopmentKAI Pharmaceuticals, IncSan FranciscoUSA
  2. 2.KAI Pharmaceuticals, IncSan FranciscoUSA

Personalised recommendations