Advertisement

Industrial-Scale Manufacturing of a Possible Oligonucleotide Cargo CPP-Based Drug

  • Ulf Tedebark
  • Anthony Scozzari
  • Oleg Werbitzky
  • Daniel Capaldi
  • Lars Holmberg
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 683)

Abstract

This chapter describes the manufacturing process to a certain level for a possible oligonucleotide cargo and a peptide API in a multi-kilogram scale from a manufacture’s point of view. In the concluding remarks, possible conjugation methods will be discussed from an industrial-scale perspective.

Key words

Industrial scale Oligonucleotide siRNA Phosphorothioate Peptide CPP Conjugate Manufacturing Solid-phase peptide synthesis (SPPS) Fmoc/tBu strategy HPLC peptide and oligonucleotide purification Peptide and oligonucleotide isolation 

Notes

Acknowledgments

The authors thank Isaiah Cedillo and Kent VanSooy of Isis Pharmaceuticals, Inc. for their assistance.

References

  1. 1.
    Niven, R., Pearlman, R., Wedeking, T., Mackeigan, J., Noker, P., Simpson-Herren, L., Smith, J. G. (1998) Biodistribution of radiolabeled lipid-DNA complexes and DNA in mice. J Pharm Sci. 87, 1292–1299.CrossRefPubMedGoogle Scholar
  2. 2.
    Behlke, M. A. (2008) Chemical modification of siRNA for in vivo use. Oligonucleotides. 18, 305–320.CrossRefPubMedGoogle Scholar
  3. 3.
    Juliano, R., Bauman, J., Kang, H., Ming, X. (2009) Biological barriers to therapy with antisense and siRNA oligonucleotides. Mol Pharm. 6 (3), 686–695.CrossRefPubMedGoogle Scholar
  4. 4.
    Castanotto, D. and Rossi, J. J. (2009) The promises and pitfalls of RNA-interference-based therapeutics. Nature. 457, 426–33.CrossRefPubMedGoogle Scholar
  5. 5.
    Anderson, W. F. (1998) Human gene therapy. Nature. 392, 25–30.CrossRefPubMedGoogle Scholar
  6. 6.
    Jeong, J. H., Mok, H., Oh, Y-K., Park, T. G. (2009) siRNA conjugate delivery systems. Bioconjugate Chem. 20, 5–14.CrossRefGoogle Scholar
  7. 7.
    Mintzer, M. A., Simanek, E. E. (2009) Non-viral vectors for gene delivery. Chem Rev. 109, 259–302.CrossRefPubMedGoogle Scholar
  8. 8.
    Beaucage, S. L. and Caruthers, M. H. (1981) Deoxynucleoside phosphoramidites – a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 22, 1859.CrossRefGoogle Scholar
  9. 9.
    Bray, B. L. (2003) Large-scale manufacturing of peptide therapeutics by chemical synthesis. Nat Rev Drug Discov. 2, 587–593.CrossRefPubMedGoogle Scholar
  10. 10.
    Verlander, M. (2007) Industrial applications of solid-phase peptide synthesis – a status report. Int J Pept ResTher. 13 (1–2), 75–82.CrossRefGoogle Scholar
  11. 11.
    Zompra, A. A., Galanis, A. S., Werbitzky, O., Albercio, F. (2009) Manufacturing peptides as active pharmaceutical ingredients. Future Med Chem. 1 (2), 361–377.CrossRefGoogle Scholar
  12. 12.
    Vargeese, C. et al. (1998) Efficient activation of nucleoside phosphoramidites with 4,5-dicyanoimidazole during oligonucleotide synthesis. Nucleic Acids Res. 26, 1046.CrossRefPubMedGoogle Scholar
  13. 13.
    Cheruvallath, Z. S. et al. (2000) Synthesis of antisense oligonucleotides: Replacement of 3H-1, 2-benzodithiole-3-one 1, 1-dioxide (Beaucage reagent) with phenylacetyl disulfide (PADS) as efficient sulfurization reagent: From bench to bulk manufacture of active pharmaceutical ingredient. Org. Process. Res. Dev. 4, 199.CrossRefGoogle Scholar
  14. 14.
    Krotz, A. H., Cole, D. L., and Ravikumar, V. T. (1999) Synthesis of an antisense oligonucleotide targeted against C-raf kinase: Efficient oligonucleotide synthesis without chlorinated solvents. Bioorg Med Chem. 7, 435.CrossRefPubMedGoogle Scholar
  15. 15.
    Kumar, R. K. et al. (2006) Efficient synthesis of antisense phosphorothioate oligonucleotides using a universal solid support. Tetrahedron, 62, 4528.CrossRefGoogle Scholar
  16. 16.
    Subirós-Funosas, R., Prohens, R., Barbas, R., El-Faham, A., Albericio, F. (2009) Oxyma: An efficient additive for peptide synthesis to replace the benzotriazole-based HOBt and HOAt with a lower risk of explosion. Chem Eur J. 15, 9394–9403.CrossRefGoogle Scholar
  17. 17.
    Capaldi, D. C. et al. (2003)Synthesis of high-quality antisense drugs. Addition of acrylonitrile to phosphorothioate oligonucleotides: Adduct characterization and avoidance. Org Process Res Dev. 7, 832.CrossRefGoogle Scholar
  18. 18.
    Krotz, A. H. et al. (2003) Controlled detritylation of antisense oligonucleotides. Org Process Res Dev. 7, 47.CrossRefGoogle Scholar
  19. 19.
    Capaldi, D. C. and Scozzari, A. N. (2006) Manufacturing and analytical processes for 2′-O-(2-methoxyethyl)-modified oligonucleotides. In: Crooke, S. T., ed. Antisense drug technology: Principals, strategies and applications, 2nd Edition. Boca Raton, CRC Press, 401–434.Google Scholar
  20. 20.
    Goodmann, M. edited by (2002) Methods of organic chemistry, (Houben-Weyl), synthesis of peptides and peptidomimetics, Volumes E22a and E22b. Georg Thieme Verlag, Stuttgart, New York.Google Scholar
  21. 21.
    Benoiton, N. L. (2006) Chemistry of peptide synthesis. Taylor & Francis Group, Boca Raton, FL, USA.Google Scholar
  22. 22.
    Chan, W. C. and White, P. D. edited by (2000) Fmoc solid phase peptide synthesis – a practical approach. Oxford University Press, UK.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ulf Tedebark
    • 1
  • Anthony Scozzari
    • 2
  • Oleg Werbitzky
    • 3
  • Daniel Capaldi
    • 4
  • Lars Holmberg
    • 1
  1. 1.GE Healthcare Bio-SciencesUppsalaSweden
  2. 2.Development Chemistry and ManufacturingIsis Pharmaceuticals, IncCarlsbadUSA
  3. 3.Director InnovationLONZA AGBaselSwitzerland
  4. 4.Analytical and Process DevelopmentIsis Pharmaceuticals IncCarlsbadUSA

Personalised recommendations