Advertisement

Measuring the Action of CPP–siRNA Conjugates in the Lung

  • Sterghios A. Moschos
  • Karen G. Spink
  • Mark A. Lindsay
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 683)

Abstract

Two of the most promising and complex areas in biologics development, either as research tools or potential therapeutics, are cell-penetrating peptides (CPPs) and RNA interference (RNAi) modulators. Consequently, the combined application of these technologies in pursuit of improved delivery profiles for RNAi cargoes presents its own unique challenges. Direct access to the targeted tissue is luxury not always available to the researcher; however, the example of lung presents an excellent opportunity for presenting methodologies relevant to understanding the local impact of CPP-conjugated RNAi modulators. This chapter therefore expands upon updated protocols established on the study of the function of endogenous RNAi and the utility of CPPs in the delivery of short interfering RNA (siRNA) to therapeutically relevant cells in the lung. Methods for sample collection, preservation, and processing are provided with a view to facilitate qualitative and quantitative analysis of delivery. In addition, a protocol for mapping siRNA delivery by in situ hybridisation is provided.

Key words

CPP siRNA Lung RNA extraction Protein extraction In situ hybridisation In vivo siRNA quantification 

References

  1. 1.
    Wagstaff, K.M., and Jans, D.A. (2006) Protein transduction: cell penetrating peptides and their therapeutic applications. Curr Med Chem 13(12), 1371–87.CrossRefPubMedGoogle Scholar
  2. 2.
    Morris, M.C., Deshayes, S., Heitz, F., and Divita, G. (2008) Cell-penetrating peptides: from molecular mechanisms to therapeutics. Biol Cell 100(4), 201–17.CrossRefPubMedGoogle Scholar
  3. 3.
    Moschos, S.A., Williams, A.E., and Lindsay, M.A. (2007) Cell-penetrating-peptide-mediated siRNA lung delivery. Biochem Soc Trans 35(Pt 4), 807–10.PubMedGoogle Scholar
  4. 4.
    Moschos, S.A., Jones, S.W., Perry, M.M., Williams, A.E., Erjefalt, J.S., Turner, J.J., Barnes, P.J., Sproat, B.S., Gait, M.J., and Lindsay, M.A. (2007) Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug Chem 18(5), 1450–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Richardt-Pargmann, D., and Vollmer, J. (2009) Stimulation of the immune system by therapeutic antisense oligodeoxynucleotides and small interfering RNAs via nucleic acid receptors. Ann N Y Acad Sci 1175, 40–54.CrossRefPubMedGoogle Scholar
  6. 6.
    Robbins, M., Judge, A., Liang, L., McClintock, K., Yaworski, E., and MacLachlan, I. (2007) 2′-O-methyl-modified RNAs act as TLR7 antagonists. Mol Ther 15(9), 1663–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Karikó, K., Bhuyan, P., Capodici, J., and Weissman, D. (2004) Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol 172(11), 6545–9.PubMedGoogle Scholar
  8. 8.
    Matsukura, S., Kokubu, F., Kurokawa, M., Kawaguchi, M., Ieki, K., Kuga, H., Odaka, M., Suzuki, S., Watanabe, S., Takeuchi, H., Kasama, T., and Adachi, M. (2006) Synthetic double-stranded RNA induces multiple genes related to inflammation through Toll-like receptor 3 depending on NF-kappaB and/or IRF-3 in airway epithelial cells. Clin Exp Allergy 36(8), 1049–62.CrossRefPubMedGoogle Scholar
  9. 9.
    Kleinman, M.E., Yamada, K., Takeda, A., Chandrasekaran, V., Nozaki, M., Baffi, J.Z., Albuquerque, R.J., Yamasaki, S., Itaya, M., Pan, Y., Appukuttan, B., Gibbs, D., Yang, Z., Karikó, K., Ambati, B.K., Wilgus, T.A., DiPietro, L.A., Sakurai, E., Zhang, K., Smith, J.R., Taylor, E.W., and Ambati, J. (2008) Nature 452(7187), 591–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Fukuda, K., Watanabe, T., Tokisue, T., Tsujita, T., Nishikawa, S., Hasegawa, T., Seya, T., and Matsumoto, M. (2008) Modulation of double-stranded RNA recognition by the N-terminal histidine-rich region of the human toll-like receptor 3. J Biol Chem 283(33), 22787–94.CrossRefPubMedGoogle Scholar
  11. 11.
    Eguchi, A., Meade, B.R., Chang, Y.C., Fredrickson, C.T., Willert, K., Puri, N., and Dowdy, S.F. (2009) Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nat Biotechnol 27(6), 567–71.CrossRefPubMedGoogle Scholar
  12. 12.
    Crombez, L., Aldrian-Herrada, G., Konate, K., Nguyen, Q.N., McMaster, G.K., Brasseur, R., Heitz, F., and Divita, G. (2009) A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol Ther 17(1), 95–103.CrossRefPubMedGoogle Scholar
  13. 13.
    Howard, K.A., Rahbek, U.L., Liu, X., Damgaard, C.K., Glud, S.Z., Andersen, M.Ø., Hovgaard, M.B., Schmitz, A., Nyengaard, J.R., Besenbacher, F., and Kjems, J. (2006) RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther 14(4), 476–84.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang, X., Shan, P., Jiang, D., Noble, P.W., Abraham, N.G., Kappas, A., and Lee, P.J. (2004) Small interfering RNA targeting heme oxygenase-1 enhances ischemia-reperfusion-induced lung apoptosis. J Biol Chem 279(11), 10677–84.CrossRefPubMedGoogle Scholar
  15. 15.
    Alvarez, R., Elbashir, S., Borland, T., Toudjarska, I., Hadwiger, P., John, M., Roehl, I., Morskaya, S.S., Martinello, R., Kahn, J., Van Ranst, M., Tripp, R.A., DeVincenzo, J.P., Pandey, R., Maier, M., Nechev, L., Manoharan, M., Kotelianski, V., and Meyers R. (2009) RNA interference-mediated silencing of the respiratory syncytial virus nucleocapsid defines a potent antiviral strategy. Antimicrob Agents Chemother 53(9), 3952–62.CrossRefPubMedGoogle Scholar
  16. 16.
    Raymond, C.K., Roberts, B.S., Garrett-Engele, P., Lim, L.P., and Johnson, J.M. (2005) Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA 11(11), 1737–44.CrossRefPubMedGoogle Scholar
  17. 17.
    Livak, K.J., and Scmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25, 402–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Wang, Z., Gerstein, M., and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1), 57–63.CrossRefPubMedGoogle Scholar
  19. 19.
    Cubillos-Ruiz, J.R., Engle, X., Scarlett, U.K., Martinez, D., Barber, A., Elgueta, R., Wang, L., Nesbeth, Y., Durant, Y., Gewirtz, A.T., Sentman, C.L., Kedl, R., and Conejo-Garcia, J.R. (2009) Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity. J Clin Invest 119(8), 2231–44.PubMedGoogle Scholar
  20. 20.
    Forsbach, A., Nemorin, J.G., Montino, C., Müller, C., Samulowitz, U., Vicari, A.P., Jurk, M., Mutwiri, G.K., Krieg, A.M., Lipford, G.B., and Vollmer, J. (2008) Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses. J Immunol 180(6), 3729–38.PubMedGoogle Scholar
  21. 21.
    Judge, A.D., Sood, V., Shaw, J.R., Fang, D., McClintock, K., and MacLachlan, I. (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23(4), 457–62.CrossRefPubMedGoogle Scholar
  22. 22.
    Crombez, L., Morris, M.C., Dufort, S., Aldrian-Herrada, G., Nguyen, Q., Mc Master, G., Coll, J.L., Heitz, F., and Divita, G. (2009) Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth. Nucleic Acids Res 37(14), 4559–69CrossRefPubMedGoogle Scholar
  23. 23.
    Wu, Y., Navarro, F., Lal, A., Basar, E., Pandey, R.K., Manoharan, M., Feng, Y., Lee, S.J., Lieberman, J., and Palliser, D. (2009) Durable protection from Herpes Simplex Virus-2 transmission following intravaginal application of siRNAs targeting both a viral and host gene. Cell Host Microbe 5(1), 84–94.CrossRefPubMedGoogle Scholar
  24. 24.
    Williams, A.E., Moschos, S.A., Perry, M.M., Barnes, P.J., and Lindsay, M.A. (2007) Maternally imprinted microRNAs are differentially expressed during mouse and human lung development. Dev Dyn 236(2), 572–80.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sterghios A. Moschos
    • 1
  • Karen G. Spink
    • 2
  • Mark A. Lindsay
    • 3
  1. 1.BiotherapeuticsPfizer Global Research and Development, Pfizer IncKentUK
  2. 2.BiotherapeuticsPfizer Global Research and Development Pfizer IncKentUK
  3. 3.NIHR Translational Research Facility in Respiratory Medicine, Wythenshawe HospitalUniversity of Manchester Education and Research CentreManchesterUK

Personalised recommendations