Skip to main content

Measuring the Action of CPP–siRNA Conjugates in the Lung

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 683))

Abstract

Two of the most promising and complex areas in biologics development, either as research tools or potential therapeutics, are cell-penetrating peptides (CPPs) and RNA interference (RNAi) modulators. Consequently, the combined application of these technologies in pursuit of improved delivery profiles for RNAi cargoes presents its own unique challenges. Direct access to the targeted tissue is luxury not always available to the researcher; however, the example of lung presents an excellent opportunity for presenting methodologies relevant to understanding the local impact of CPP-conjugated RNAi modulators. This chapter therefore expands upon updated protocols established on the study of the function of endogenous RNAi and the utility of CPPs in the delivery of short interfering RNA (siRNA) to therapeutically relevant cells in the lung. Methods for sample collection, preservation, and processing are provided with a view to facilitate qualitative and quantitative analysis of delivery. In addition, a protocol for mapping siRNA delivery by in situ hybridisation is provided.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wagstaff, K.M., and Jans, D.A. (2006) Protein transduction: cell penetrating peptides and their therapeutic applications. Curr Med Chem 13(12), 1371–87.

    Article  CAS  PubMed  Google Scholar 

  2. Morris, M.C., Deshayes, S., Heitz, F., and Divita, G. (2008) Cell-penetrating peptides: from molecular mechanisms to therapeutics. Biol Cell 100(4), 201–17.

    Article  CAS  PubMed  Google Scholar 

  3. Moschos, S.A., Williams, A.E., and Lindsay, M.A. (2007) Cell-penetrating-peptide-mediated siRNA lung delivery. Biochem Soc Trans 35(Pt 4), 807–10.

    CAS  PubMed  Google Scholar 

  4. Moschos, S.A., Jones, S.W., Perry, M.M., Williams, A.E., Erjefalt, J.S., Turner, J.J., Barnes, P.J., Sproat, B.S., Gait, M.J., and Lindsay, M.A. (2007) Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug Chem 18(5), 1450–9.

    Article  CAS  PubMed  Google Scholar 

  5. Richardt-Pargmann, D., and Vollmer, J. (2009) Stimulation of the immune system by therapeutic antisense oligodeoxynucleotides and small interfering RNAs via nucleic acid receptors. Ann N Y Acad Sci 1175, 40–54.

    Article  CAS  PubMed  Google Scholar 

  6. Robbins, M., Judge, A., Liang, L., McClintock, K., Yaworski, E., and MacLachlan, I. (2007) 2′-O-methyl-modified RNAs act as TLR7 antagonists. Mol Ther 15(9), 1663–9.

    Article  CAS  PubMed  Google Scholar 

  7. Karikó, K., Bhuyan, P., Capodici, J., and Weissman, D. (2004) Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol 172(11), 6545–9.

    PubMed  Google Scholar 

  8. Matsukura, S., Kokubu, F., Kurokawa, M., Kawaguchi, M., Ieki, K., Kuga, H., Odaka, M., Suzuki, S., Watanabe, S., Takeuchi, H., Kasama, T., and Adachi, M. (2006) Synthetic double-stranded RNA induces multiple genes related to inflammation through Toll-like receptor 3 depending on NF-kappaB and/or IRF-3 in airway epithelial cells. Clin Exp Allergy 36(8), 1049–62.

    Article  CAS  PubMed  Google Scholar 

  9. Kleinman, M.E., Yamada, K., Takeda, A., Chandrasekaran, V., Nozaki, M., Baffi, J.Z., Albuquerque, R.J., Yamasaki, S., Itaya, M., Pan, Y., Appukuttan, B., Gibbs, D., Yang, Z., Karikó, K., Ambati, B.K., Wilgus, T.A., DiPietro, L.A., Sakurai, E., Zhang, K., Smith, J.R., Taylor, E.W., and Ambati, J. (2008) Nature 452(7187), 591–7.

    Article  CAS  PubMed  Google Scholar 

  10. Fukuda, K., Watanabe, T., Tokisue, T., Tsujita, T., Nishikawa, S., Hasegawa, T., Seya, T., and Matsumoto, M. (2008) Modulation of double-stranded RNA recognition by the N-terminal histidine-rich region of the human toll-like receptor 3. J Biol Chem 283(33), 22787–94.

    Article  CAS  PubMed  Google Scholar 

  11. Eguchi, A., Meade, B.R., Chang, Y.C., Fredrickson, C.T., Willert, K., Puri, N., and Dowdy, S.F. (2009) Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nat Biotechnol 27(6), 567–71.

    Article  CAS  PubMed  Google Scholar 

  12. Crombez, L., Aldrian-Herrada, G., Konate, K., Nguyen, Q.N., McMaster, G.K., Brasseur, R., Heitz, F., and Divita, G. (2009) A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol Ther 17(1), 95–103.

    Article  CAS  PubMed  Google Scholar 

  13. Howard, K.A., Rahbek, U.L., Liu, X., Damgaard, C.K., Glud, S.Z., Andersen, M.Ø., Hovgaard, M.B., Schmitz, A., Nyengaard, J.R., Besenbacher, F., and Kjems, J. (2006) RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther 14(4), 476–84.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, X., Shan, P., Jiang, D., Noble, P.W., Abraham, N.G., Kappas, A., and Lee, P.J. (2004) Small interfering RNA targeting heme oxygenase-1 enhances ischemia-reperfusion-induced lung apoptosis. J Biol Chem 279(11), 10677–84.

    Article  CAS  PubMed  Google Scholar 

  15. Alvarez, R., Elbashir, S., Borland, T., Toudjarska, I., Hadwiger, P., John, M., Roehl, I., Morskaya, S.S., Martinello, R., Kahn, J., Van Ranst, M., Tripp, R.A., DeVincenzo, J.P., Pandey, R., Maier, M., Nechev, L., Manoharan, M., Kotelianski, V., and Meyers R. (2009) RNA interference-mediated silencing of the respiratory syncytial virus nucleocapsid defines a potent antiviral strategy. Antimicrob Agents Chemother 53(9), 3952–62.

    Article  CAS  PubMed  Google Scholar 

  16. Raymond, C.K., Roberts, B.S., Garrett-Engele, P., Lim, L.P., and Johnson, J.M. (2005) Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA 11(11), 1737–44.

    Article  CAS  PubMed  Google Scholar 

  17. Livak, K.J., and Scmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25, 402–8.

    Article  CAS  PubMed  Google Scholar 

  18. Wang, Z., Gerstein, M., and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1), 57–63.

    Article  CAS  PubMed  Google Scholar 

  19. Cubillos-Ruiz, J.R., Engle, X., Scarlett, U.K., Martinez, D., Barber, A., Elgueta, R., Wang, L., Nesbeth, Y., Durant, Y., Gewirtz, A.T., Sentman, C.L., Kedl, R., and Conejo-Garcia, J.R. (2009) Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity. J Clin Invest 119(8), 2231–44.

    CAS  PubMed  Google Scholar 

  20. Forsbach, A., Nemorin, J.G., Montino, C., Müller, C., Samulowitz, U., Vicari, A.P., Jurk, M., Mutwiri, G.K., Krieg, A.M., Lipford, G.B., and Vollmer, J. (2008) Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses. J Immunol 180(6), 3729–38.

    CAS  PubMed  Google Scholar 

  21. Judge, A.D., Sood, V., Shaw, J.R., Fang, D., McClintock, K., and MacLachlan, I. (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23(4), 457–62.

    Article  CAS  PubMed  Google Scholar 

  22. Crombez, L., Morris, M.C., Dufort, S., Aldrian-Herrada, G., Nguyen, Q., Mc Master, G., Coll, J.L., Heitz, F., and Divita, G. (2009) Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth. Nucleic Acids Res 37(14), 4559–69

    Article  CAS  PubMed  Google Scholar 

  23. Wu, Y., Navarro, F., Lal, A., Basar, E., Pandey, R.K., Manoharan, M., Feng, Y., Lee, S.J., Lieberman, J., and Palliser, D. (2009) Durable protection from Herpes Simplex Virus-2 transmission following intravaginal application of siRNAs targeting both a viral and host gene. Cell Host Microbe 5(1), 84–94.

    Article  CAS  PubMed  Google Scholar 

  24. Williams, A.E., Moschos, S.A., Perry, M.M., Barnes, P.J., and Lindsay, M.A. (2007) Maternally imprinted microRNAs are differentially expressed during mouse and human lung development. Dev Dyn 236(2), 572–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Moschos, S.A., Spink, K.G., Lindsay, M.A. (2011). Measuring the Action of CPP–siRNA Conjugates in the Lung. In: Langel, Ü. (eds) Cell-Penetrating Peptides. Methods in Molecular Biology, vol 683. Humana Press. https://doi.org/10.1007/978-1-60761-919-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-919-2_30

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-918-5

  • Online ISBN: 978-1-60761-919-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics