Testing Membrane Interactions of CPPs

  • Astrid GräslundEmail author
  • Lena Mäler
Part of the Methods in Molecular Biology book series (MIMB, volume 683)


The chapter deals with some biophysical methods used for investigating CPP-induced changes in membrane properties by spectroscopy methods such as fluorescence or NMR and methods used for probing CPP-induced leakage in membranes. Some useful model systems for biomembranes are described. These include large unilamellar phospholipid vesicles (LUVs) of well-defined size (diameter typically 100 nm). A protocol for the preparation of such vesicles is included. The leakage studies make use of LUVs with entrapped dye molecules. The NMR studies make use of mixed micelles (bicelles) as a membrane mimetic system, which can be oriented in the magnetic field of the spectrometer.

Key words

Fluorescence NMR Large unilamellar vesicles Bicelles Membrane leakage Membrane fluidity Membrane dynamics 



The work presented in this article was supported by grants from the Swedish Research Council, the Center for Biomembrane Research, and from the Knut and Alice Wallenberg Foundation. We thank Dr. Jesper Lind for assistance in producing the figure.


  1. 1.
    Patel, L.N., Zaro, J.I., and Shen, W.-C. (2007) Cell penetrating peptides: Intracellular pathways and pharmaceutical perspectives Pharm Res 24, 1977–1992.CrossRefPubMedGoogle Scholar
  2. 2.
    Jones, A.T. (2007) Macropinocytosis: searching for an endocytic identity and a role in the uptake of cell penetrating peptides J Cell Mol Med 11, 670–684.CrossRefPubMedGoogle Scholar
  3. 3.
    Kerr, M.C., and Teasdale, R.D. (2009) Defining macropinocytosis Traffic 10, 364–371.CrossRefPubMedGoogle Scholar
  4. 4.
    Wadia, J.S., Stan, R.V., and Dowdy, S.F. (2004) Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis Nat Med 10, 310–315.CrossRefPubMedGoogle Scholar
  5. 5.
    Andersson, A., Danielsson, J., Gräslund, A., and Mäler, L. (2007) Kinetic models for peptide-induced leakage from vesicles and cells Eur Biophys J 36, 621–635.CrossRefPubMedGoogle Scholar
  6. 6.
    Lakowicz, J.R. (1999) Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic/Plenum, New York, Ch. 10.Google Scholar
  7. 7.
    Seelig, J. (1977) Deuterium magnetic resonance: theory and application to lipid membranes Q Rev Biophys 10, 353–418.CrossRefPubMedGoogle Scholar
  8. 8.
    Schwarz, G. and Arbuzova, A. (1995) Pore kinetics reflected in the dequenching of a lipid vesicle entrapped fluorescent dye Biochim Biophys Acta 1239, 51–57.CrossRefPubMedGoogle Scholar
  9. 9.
    Bárány-Wallje, E., Gaur, J., Lundberg, P., Langel, Ü., and Gräslund, A. (2007) Differential membrane perturbation caused by the cell penetrating peptide Tp10 depending on attached cargo FEBS Lett 581, 2389–2393.CrossRefPubMedGoogle Scholar
  10. 10.
    Magzoub, M., Pramanik, A., and Gräslund, A. (2005) Modeling the endosomal escape of cell-penetrating peptides: Transmembrane pH gradient driven translocation across phospholipid bilayers Biochemistry 44, 14890–14897.CrossRefPubMedGoogle Scholar
  11. 11.
    Björklund, J., Biverståhl, H., Gräslund, A., Mäler, L., and Brzezinski, P. (2006) Real-time transmembrane translocation of penetratin driven by light-generated proton pumping Biophys J 91, L29-L31.CrossRefPubMedGoogle Scholar
  12. 12.
    Gräslund, A. and Eriksson, L.E.G. (2002) Biophysical studies of cell-penetrating peptides. In Cell-Penetrating Peptides: Processes and Applications (ed. Ü. Langel), pp 223–244, CRC, New York.Google Scholar
  13. 13.
    Ram, P. and Prestegard, J.H. (1988) Magnetic field induced ordering of bile salt/phospholipid micelles: new media for NMR structural investigations Biochim Biophys Acta 940, 289–294.CrossRefPubMedGoogle Scholar
  14. 14.
    Sanders, C.R., Hare, B.J., Howard, K.P., and Prestegard, J.H. (1994) Magnetically-oriented phospholipid micelles as a tool for the study of membrane-associated molecules Prog NMR Spectrosc 26, 421–444.CrossRefGoogle Scholar
  15. 15.
    Sanders, C.R. and Prosser, R.S. (1998) Bicelles: a model membrane system for all seasons? Structure 6, 1227–1234.CrossRefPubMedGoogle Scholar
  16. 16.
    Gaemers, S. and Bax, A. (2001) Morphology of three lyotropic liquid crystalline biological NMR media studied by translational diffusion anisotropy J Am Chem Soc 123, 12343–12352.CrossRefPubMedGoogle Scholar
  17. 17.
    Magzoub, M., Eriksson, L.E.G., and Gräslund, A. (2003) Comparison of the interaction, positioning, structure induction and membrane perturbation of cell-penetrating peptides and non-translocating variants with phospholipid vesicles Biophys Chem 103, 271–288.CrossRefPubMedGoogle Scholar
  18. 18.
    Lakowicz, J.R. (1999) Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic/Plenum, New York, p. 72.Google Scholar
  19. 19.
    Magzoub, M., Oglecka, K., Pramanik, A., Eriksson, L.E.G. and Gräslund, A. (2005) Membrane perturbation effects of peptides derived from the N-termini of unprocessed prion proteins. Biochim Biophys Acta 1716, 126–136.CrossRefPubMedGoogle Scholar
  20. 20.
    Oglecka, K., Lundberg, P., Magzoub, M., Langel, Ü., and Gräslund, A. (2008) Relevance of the N-terminal NLS-like sequence of the prion protein for membrane perturbation effects. Biochim Biophys Acta 1778, 206–213.CrossRefPubMedGoogle Scholar
  21. 21.
    Davis, J.H., Jeffrey, K.R., Bloom, M., and Valic, M.I. (1976) Quadrupolar echo deuterium magnetic resonance spectroscopy in ordered hydrocarbon chains Chem Phys Lett 42, 390–394.CrossRefGoogle Scholar
  22. 22.
    Biverståhl, H., Andersson, A., Gräslund, A., and Mäler L. (2004) NMR solution structure and membrane interaction of the N-terminal sequence (1-30) of the bovine prion protein Biochemistry 43, 14940–14947.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden

Personalised recommendations