Advertisement

A Non-Covalent Peptide-Based Strategy for siRNA Delivery

  • Laurence Crombez
  • Gilles DivitaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 683)

Abstract

The development of short-interfering RNA (siRNA) has provided great hope for therapeutic targeting of specific genes responsible for pathological disorders. However, the poor cellular uptake of siRNA together with the low permeability of the cell membrane to negatively charged molecules, remain major obstacles to clinical development. So far there is no universal method for siRNA delivery as they all present several limitations. Several non-viral strategies have been proposed to improve the delivery of synthetic siRNAs in both cultured cells and in vivo. Cell-penetrating peptides (CPPs) or protein transduction domains (PTD) constitute very promising tools for non-invasive cellular import of siRNA and non-covalent CPP/PTD-based strategies have been successfully applied for ex vivo and in vivo delivery of therapeutic siRNA molecules. We recently described a new peptide-based system, CADY, for efficient delivery of siRNA in both primary and suspension cell lines. CADY is a secondary amphiphatic peptide able to form stable non-covalent complexes with siRNA and to improve their cellular uptake independently of the endosomal pathway. This chapter describes easy to handle protocols for the use of the CADY-nanoparticle technology for the delivery of siRNA into both adherent and suspension cell lines. It will also highlight different critical points in the peptide/siRNA complex preparation and transfection protocols, in order to obtain siRNA-associated interfering response at low nanomolar concentration.

Key words

Cell-penetrating peptide Peptide-based non-covalent strategy Amphiphatic peptide Non-endosomal pathway siRNA delivery 

Notes

Acknowledgments

This work was supported in part by the Centre National de la Recherche Scientifique (CNRS), by the Agence Nationale de la Recherche (ANR, ANR-06-BLAN-0071-Pepvec4Ther), and by a grant from Panomics Inc. L.C. was supported by a grant from the Ligue de Recherche contre le Cancer (LNCC). We thank M.C. Morris for critical reading of the manuscript and all members of the laboratory for fruitful discussions.

References

  1. 1.
    Fire, A., Xu, S., Montgomery, MK., Kostas, SA., Driver, SE., and Mello, CC. (1988) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391, 806–811.CrossRefGoogle Scholar
  2. 2.
    Elbashir, SM., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 411, 494–498.CrossRefPubMedGoogle Scholar
  3. 3.
    Hannon, GJ. (2002) RNA interference. Nature. 418, 244–251.CrossRefPubMedGoogle Scholar
  4. 4.
    De Fougerolles, A., Vornlocher, H-P., Maraganore, J., and Lieberman, J. (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov. 6, 443–453.CrossRefPubMedGoogle Scholar
  5. 5.
    Juliano, R., Alam, MR., Dixit, V., and Kang, H. (2008) Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res. 36, 4158–4171.CrossRefPubMedGoogle Scholar
  6. 6.
    Whitehead, KA., Langer, R., and Anderson, DG. (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 8, 129–138.CrossRefPubMedGoogle Scholar
  7. 7.
    Eguchi, A., and Dowdy, SF. (2009) siRNA delivery using peptide transduction domains. Trends Pharmacol Sci. 30, 341–345.CrossRefPubMedGoogle Scholar
  8. 8.
    El-Andaloussi, S., Holm, T., and Langel, U. (2005) Cell-penetrating peptides: mechanisms and applications. Curr Pharm Des. 11, 3597–3611.CrossRefPubMedGoogle Scholar
  9. 9.
    Heitz, F., Morris, MC., and Divita, G. (2009) Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol. 157, 195–206.CrossRefPubMedGoogle Scholar
  10. 10.
    Foerg, C., and Merkle, HP. (2008) On the biomedical promise of cell penetrating peptides: limits versus prospects. J Pharm Sci. 97, 144–162.CrossRefPubMedGoogle Scholar
  11. 11.
    Crombez, L., Morris, MC., Deshayes, S., and Divita G. (2008) Peptide-based nanoparticles for ex vivo and in vivo drug delivery. Curr Pharm Des. 14, 3656–3665.CrossRefPubMedGoogle Scholar
  12. 12.
    Meade, BR., and Dowdy, SF. (2007) Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Adv Drug Deliv Rev. 59, 134–140.CrossRefPubMedGoogle Scholar
  13. 13.
    Muratovska, A., and Eccles, MR. (2004) Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett. 558, 63–75.CrossRefPubMedGoogle Scholar
  14. 14.
    Davidson, TJ., Harel, S., Arboleda, VA., Prunell, GF., Shelanski, ML., Greene, LA., and Troy, CM. (2004) Highly efficient small interfering RNA delivery to primary mammalian neurons induces MicroRNA-like effects before mRNA degradation. J Neurosci. 10, 10040–10046.CrossRefGoogle Scholar
  15. 15.
    Moschos, SA., Jones, SW., Perry, MM., Williams, AE., Erjefalt, JS., Turner, JJ., Barnes, PJ., Sproat, BS., Gait, MJ., and Lindsay, MA. (2007) Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug Chem. 18, 1450–1459.CrossRefPubMedGoogle Scholar
  16. 16.
    Simeoni, F., Morris, MC., Heitz, F., and Divita, G. (2003) Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res. 31, 2717–2724.CrossRefPubMedGoogle Scholar
  17. 17.
    Veldhoen, S., Laufer, SD., Trampe, A., and Restle, T. (2006) Cellular delivery of small interfering RNA by a non-covalently attached cell-penetrating peptide: quantitative analysis of uptake and biological effect. Nucleic Acids Res. 34, 6561–6573.CrossRefPubMedGoogle Scholar
  18. 18.
    Morris, KV., Chan, SW., Jacobsen, SE., and Looney, DJ. (2004) Small interfering RNA-induced transcriptional gene silencing in human cells. Science. 305, 1289–1292.CrossRefPubMedGoogle Scholar
  19. 19.
    Zeineddine, D., Papadimou, E., Chebli, K., Gineste, M., Liu, J., Grey, C., Thurig, S., Behfar, A., Wallace, VA., Skerjanc, IS., and Puceat, M. (2006) Oct-3/4 dose dependently regulates specification of embryonic stem cells toward a cardiac lineage and early heart development. Dev Cell. 11, 535–546.CrossRefPubMedGoogle Scholar
  20. 20.
    Crombez, L., Morris, MC., Dufort, S., Aldrian-Herrada, G., Nguyen, Q., Mc Master, G., Coll, JL., Heitz, F., and Divita, G. (2009) Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth. Nucleic Acids Res. 37, 4559–4569.CrossRefPubMedGoogle Scholar
  21. 21.
    Kim, WJ., Christensen, LV., Jo, S., Yockman, JW., Jeong, JH., Kim, YH., and Kim, SW. (2006) Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Mol Ther. 14, 343–350.CrossRefPubMedGoogle Scholar
  22. 22.
    Kumar, P., Wu, H., McBride, JL., Jung, KE., Kim, MH., Davidson, BL., Lee, SK., Shankar, P., and Manjunath, N. (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature. 7149, 39–43.CrossRefGoogle Scholar
  23. 23.
    Kumar, P., Ban, HS., Kim, SS., Wu, H., Pearson, T., Greiner, DL., Laouar, A., Yao, J., Haridas, V., Habiro, K., Yang, YG, Jeong, JH., Lee, KY., Kim, YH., Kim, SW., Peipp, M., Fey, GH., Manjunath, N., Shultz, LD., Lee, SK., and Shankar, P. (2008) T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell. 134, 577–586.CrossRefPubMedGoogle Scholar
  24. 24.
    Lundberg, P., El-Andaloussi, S., Sutlu, T., Johansson, H., and Langel, U. (2007) Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB J. 11, 2664–2671.CrossRefGoogle Scholar
  25. 25.
    Eguchi, A., Meade, BR., Chang, YC., Fredrickson, CT., Willert, K., Puri, N., and Dowdy, SF. (2009) Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nat Biotechnol. 27, 567–571.CrossRefPubMedGoogle Scholar
  26. 26.
    Crombez, L., Aldrian-Herrada, G., Konate, K., Nguyen, Q-N., McMaster, G., Brasseur, R., Heitz F., and Divita, G. (2009) A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol Ther. 17, 95–103.CrossRefPubMedGoogle Scholar
  27. 27.
    Rittner, K., Benavente, A., Bompard-Sorlet, A., Heitz, F., Divita, G., Brasseur, R., and Jacobs, E. (2002) New basic membrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo. Mol Ther. 5, 104–114.CrossRefPubMedGoogle Scholar
  28. 28.
    Deshayes, S., Konate, K., Aldrian, G., Heitz, F., and Divita, G. (2010) Interactions of amphipathic CPPs with model membranes. In: Ülo Langel (ed.) Cell-Penetrating Peptides: Methods and Protocol (Methods Mol Biol, 683). Chapter 4, Springer, New York.Google Scholar
  29. 29.
    Morris, MC., Vidal, P., Chaloin, L., Heitz, F., and Divita, G. (1997) A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res. 25, 2730–2736.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Molecular Biophysics and TherapeuticsCentre de Recherches de Biochimie MacromoléculaireMontpellierFrance
  2. 2.Biophysics Department, Centre de Recherches de Biochimie MacromoléculaireMontpellier UniversityMontpellierFrance

Personalised recommendations