Advertisement

CPP-Directed Oligonucleotide Exon Skipping in Animal Models of Duchenne Muscular Dystrophy

  • HaiFang Yin
  • Hong Moulton
  • Corinne Betts
  • Matthew Wood
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 683)

Abstract

Antisense oligonucleotides (AOs) are effective splice switching agents and have potential as therapeutics via the exclusion or inclusion of specific target gene exons to ameliorate and modify disease progression. The leading example is Duchenne muscular dystrophy (DMD), a fatal muscle degenerative disease, where AO-mediated skipping of specific DMD gene exons can restore the disrupted DMD open reading frame, leading to the production of functional dystrophin protein and ameliorate the DMD phenotype in animal models. Clinical proof-of-concept has recently been shown in two successful, independent Phase I clinical trials. These trials both followed local intramuscular treatments, and the challenge now is to develop and test systemic protocols, which will be required for treatment-aimed disease modification. Recently, a number of groups have demonstrated the promise of AOs directly conjugated to cell-penetrating peptides (CPPs) as having significant potential for systemic delivery and therapeutic correction in DMD animal models. Here, we review the background to this work and describe in detail the experimental protocols used in studies aimed at investigating CPP-conjugated AOs as systemic splice correcting agents in animal models of DMD.

Key words

Antisense oligonucleotide Morpholino Cell-penetrating peptide Splice correction Exon skipping Duchenne muscular dystrophy Dystrophin Muscle Heart Systemic delivery 

Notes

Acknowledgments

This work was supported by UK Department of Health and the UK Muscular Dystrophy Campaign. The authors would like to thank the UK MDEX Consortium for helpful discussions and support. They would also like to thank Professor Kay Davies, Department of Physiology, Anatomy and Genetics, University of Oxford for providing access to facilities including the mdx mouse colony.

References

  1. 1.
    Davies, K. E. and Nowak, K. J. (2006) Molecular mechanisms of muscular dystrophies: old and new players, Nat Rev Mol Cell Biol 7, 762–773.CrossRefPubMedGoogle Scholar
  2. 2.
    Muntoni, F., Torelli, S., and Ferlini, A. (2003) Dystrophin and mutations: one gene, several proteins, multiple phenotypes, Lancet Neurol 2, 731–740.CrossRefPubMedGoogle Scholar
  3. 3.
    van Deutekom, J. C. and van Ommen, G. J. (2003) Advances in Duchenne muscular dystrophy gene therapy, Nat Rev Genet 4, 774–783.CrossRefPubMedGoogle Scholar
  4. 4.
    Aartsma-Rus, A., Janson, A. A., Kaman, W. E., Bremmer-Bout, M., den Dunnen, J. T., Baas, F., van Ommen, G. J., and van Deutekom, J. C. (2003) Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients, Hum Mol Genet 12, 907–914.CrossRefPubMedGoogle Scholar
  5. 5.
    Alter, J., Lou, F., Rabinowitz, A., Yin, H., Rosenfeld, J., Wilton, S. D., Partridge, T. A., and Lu, Q. L. (2006) Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology, Nat Med 12, 175–177.CrossRefPubMedGoogle Scholar
  6. 6.
    Jearawiriyapaisarn, N., Moulton, H. M., Buckley, B., Roberts, J., Sazani, P., Fucharoen, S., Iversen, P. L., and Kole, R. (2008) Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice, Mol Ther 16, 1624–1629.CrossRefPubMedGoogle Scholar
  7. 7.
    Lu, Q. L., Mann, C. J., Lou, F., Bou-Gharios, G., Morris, G. E., Xue, S. A., Fletcher, S., Partridge, T. A., and Wilton, S. D. (2003) Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse, Nat Med 9, 1009–1014.CrossRefPubMedGoogle Scholar
  8. 8.
    Lu, Q. L., Rabinowitz, A., Chen, Y. C., Yokota, T., Yin, H., Alter, J., Jadoon, A., Bou-Gharios, G., and Partridge, T. (2005) Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles, Proc Natl Acad Sci U S A 102, 198–203.CrossRefPubMedGoogle Scholar
  9. 9.
    van Deutekom, J. C., Bremmer-Bout, M., Janson, A. A., Ginjaar, I. B., Baas, F., den Dunnen, J. T., and van Ommen, G. J. (2001) Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells, Hum Mol Genet 10, 1547–1554.CrossRefPubMedGoogle Scholar
  10. 10.
    Wu, B., Moulton, H. M., Iversen, P. L., Jiang, J., Li, J., Spurney, C. F., Sali, A., Guerron, A. D., Nagaraju, K., Doran, T., Lu, P., Xiao, X., and Lu, Q. L. (2008) Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer, Proc Natl Acad Sci U S A 105, 14814–14819.CrossRefPubMedGoogle Scholar
  11. 11.
    Yin, H., Lu, Q., and Wood, M. (2008) Effective exon skipping and restoration of dystrophin expression by peptide nucleic acid antisense oligonucleotides in mdx mice, Mol Ther 16, 38–45.CrossRefPubMedGoogle Scholar
  12. 12.
    Yin, H., Moulton, H. M., Seow, Y., Boyd, C., Boutilier, J., Iverson, P., and Wood, M. J. (2008) Cell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function, Hum Mol Genet 17, 3909–3918.CrossRefPubMedGoogle Scholar
  13. 13.
    Arechavala-Gomeza, V., Graham, I. R., Popplewell, L. J., Adams, A. M., Aartsma-Rus, A., Kinali, M., Morgan, J. E., van Deutekom, J. C., Wilton, S. D., Dickson, G., and Muntoni, F. (2007) Comparative analysis of antisense oligonucleotide sequences for targeted skipping of exon 51 during dystrophin pre-mRNA splicing in human muscle, Hum Gene Ther 18, 798–810.CrossRefPubMedGoogle Scholar
  14. 14.
    Kinali, M., Arechavala-Gomeza, V., Feng, L., Cirak, S., Hunt, D., Adkin, C., Guglieri, M., Ashton, E., Abbs, S., Nihoyannopoulos, P., Garralda, M. E., Rutherford, M., McCulley, C., Popplewell, L., Graham, I. R., Dickson, G., Wood, M. J., Wells, D. J., Wilton, S. D., Kole, R., Straub, V., Bushby, K., Sewry, C., Morgan, J. E., and Muntoni, F. (2009) Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study, Lancet Neurol 8, 918–928.CrossRefPubMedGoogle Scholar
  15. 15.
    van Deutekom, J. C., Janson, A. A., Ginjaar, I. B., Frankhuizen, W. S., Aartsma-Rus, A., Bremmer-Bout, M., den Dunnen, J. T., Koop, K., van der Kooi, A. J., Goemans, N. M., de Kimpe, S. J., Ekhart, P. F., Venneker, E. H., Platenburg, G. J., Verschuuren, J. J., and van Ommen, G. J. (2007) Local dystrophin restoration with antisense oligonucleotide PRO051, N Engl J Med 357, 2677–2686.CrossRefPubMedGoogle Scholar
  16. 16.
    Aartsma-Rus, A., Fokkema, I., Verschuuren, J., Ginjaar, I., van Deutekom, J., van Ommen, G. J., and den Dunnen, J. T. (2009) Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations, Hum Mutat 30, 293–299.CrossRefPubMedGoogle Scholar
  17. 17.
    Moulton, H. M., Fletcher, S., Neuman, B. W., McClorey, G., Stein, D. A., Abes, S., Wilton, S. D., Buchmeier, M. J., Lebleu, B., and Iversen, P. L. (2007) Cell-penetrating peptide-morpholino conjugates alter pre-mRNA splicing of DMD (Duchenne muscular dystrophy) and inhibit murine coronavirus replication in vivo, Biochem Soc Trans 35, 826–828.CrossRefPubMedGoogle Scholar
  18. 18.
    Wu, B., Li, Y., Morcos, P. A., Doran, T. J., Lu, P., and Lu, Q. L. (2009) Octa-guanidine morpholino restores dystrophin expression in cardiac and skeletal muscles and ameliorates pathology in dystrophic mdx mice, Mol Ther 17, 864–871.CrossRefPubMedGoogle Scholar
  19. 19.
    Yokota, T., Lu, Q. L., Partridge, T., Kobayashi, M., Nakamura, A., Takeda, S., and Hoffman, E. (2009) Efficacy of systemic morpholino exon-skipping in duchenne dystrophy dogs, Ann Neurol 65, 667–76.CrossRefPubMedGoogle Scholar
  20. 20.
    Ivanova, G. D., Arzumanov, A., Abes, R., Yin, H., Wood, M. J., Lebleu, B., and Gait, M. J. (2008) Improved cell-penetrating peptide-PNA conjugates for splicing redirection in HeLa cells and exon skipping in mdx mouse muscle, Nucleic Acids Res 36, 6418–6428.CrossRefPubMedGoogle Scholar
  21. 21.
    Ivanova, G. D., Fabani, M. M., Arzumanov, A. A., Abes, R., Yin, H., Lebleu, B., Wood, M., and Gait, M. J. (2008) PNA-peptide conjugates as intracellular gene control agents, Nucleic Acids Symp Ser (Oxf) 31–32.Google Scholar
  22. 22.
    Yin, H., Moulton, H. M., Betts, C., Seow, Y., Boutilier, J., Iverson, P. L., and Wood, M. J. (2009) A fusion peptide directs enhanced systemic dystrophin exon skipping and functional restoration in dystrophin-deficient mdx mice, Hum Mol Genet 18, 4405–4414.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • HaiFang Yin
    • 1
  • Hong Moulton
    • 2
  • Corinne Betts
    • 3
  • Matthew Wood
    • 1
  1. 1.Anatomy and Genetics, Department of PhysiologyUniversity of OxfordOxfordUK
  2. 2.Oregon State UniversityCorvallisUSA
  3. 3.Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK

Personalised recommendations