Skip to main content

Penetratin Story: An Overview

  • Protocol
  • First Online:
Cell-Penetrating Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 683))

Abstract

Cell-penetrating peptides are short, often hydrophilic peptides that get access to the intracellular milieu. They have aroused great interest both in academic and applied research. First, cellular internalization of CPPs often involves the crossing of a biological membrane (plasma or vesicular), thus challenging the view of the nonpermeability of these structures to large hydrophilic molecules. Secondly, CPPs can drive the internalization of hydrophilic cargoes into cells, a rate-limiting step in the development of many therapeutic substances. Interestingly, the two mostly used CPPs, TAT and Penetratin peptides, are derived from natural proteins, HIV Tat and Antennapedia homeoprotein, respectively. The identification of the Penetratin peptide, summarized in this review, is intimately linked to the study of its parental natural protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frankel, A. D., and Pabo, C. O. (1988) Cellular uptake of the Tat protein from human immunodeficiency virus, Cell 55, 1189–1193.

    Article  CAS  PubMed  Google Scholar 

  2. Green, M., and Loewenstein, P. M. (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein, Cell 55, 1179–1188.

    Article  CAS  PubMed  Google Scholar 

  3. Denis-Donini, S., Glowinski, J., and Prochiantz, A. (1984) Glial heterogeneity may define the three-dimensional shape of mouse mesencephalic dopaminergic neurones, Nature 307, 641–643.

    Article  CAS  PubMed  Google Scholar 

  4. Chamak, B., Fellous, A., Glowinski, J., and Prochiantz, A. (1987) MAP2 expression and neuritic outgrowth and branching are coregulated through region-specific neuro-astroglial interactions, J Neurosci 7, 3163–3170.

    CAS  PubMed  Google Scholar 

  5. Gehring, W. J., Qian, Y. Q., Billeter, M., Furukubo-Tokunaga, K., Schier, A. F., Resendez-Perez, D., Affolter, M., Otting, G., and Wuthrich, K. (1994) Homeodomain-DNA recognition, Cell 78, 211–223.

    Article  CAS  PubMed  Google Scholar 

  6. Ayala, J., Touchot, N., Zahraoui, A., Tavitian, A., and Prochiantz, A. (1990) The product of rab2, a small GTP binding protein, increases neuronal adhesion, and neurite growth in vitro, Neuron 4, 797–805.

    Article  CAS  PubMed  Google Scholar 

  7. Borasio, G. D., John, J., Wittinghofer, A., Barde, Y. A., Sendtner, M., and Heumann, R. (1989) ras p21 protein promotes survival and fiber outgrowth of cultured embryonic neurons, Neuron 2, 1087–1096.

    Article  CAS  PubMed  Google Scholar 

  8. Joliot, A., Pernelle, C., Deagostini-Bazin, H., and Prochiantz, A. (1991) Antennapedia homeobox peptide regulates neural morphogenesis, Proc Natl Acad Sci U S A 88, 1864–1868.

    Article  CAS  PubMed  Google Scholar 

  9. Bloch-Gallego, E., Le Roux, I., Joliot, A. H., Volovitch, M., Henderson, C. E., and Prochiantz, A. (1993) Antennapedia homeobox peptide enhances growth and branching of embryonic chicken motoneurons in vitro, J Cell Biol 120, 485–492.

    Article  CAS  PubMed  Google Scholar 

  10. Le Roux, I., Joliot, A. H., Bloch-Gallego, E., Prochiantz, A., and Volovitch, M. (1993) Neurotrophic activity of the Antennapedia homeodomain depends on its specific DNA-binding properties, Proc Natl Acad Sci U S A 90, 9120–9124.

    Article  PubMed  Google Scholar 

  11. Le Roux, I., Duharcourt, S., Volovitch, M., Prochiantz, A., and Ronchi, E. (1995) Promoter-specific regulation of gene expression by an exogenously added homedomain that promotes neurite growth, FEBS Lett 368, 311–314.

    Article  PubMed  Google Scholar 

  12. Joliot, A. H., Triller, A., Volovitch, M., Pernelle, C., and Prochiantz, A. (1991) alpha-2,8-Polysialic acid is the neuronal surface receptor of antennapedia homeobox peptide, New Biol 3, 1121–1134.

    CAS  PubMed  Google Scholar 

  13. Derossi, D., Joliot, A. H., Chassaing, G., and Prochiantz, A. (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes, J Biol Chem 269, 10444–10450.

    CAS  PubMed  Google Scholar 

  14. Duchardt, F., Fotin-Mleczek, M., Schwarz, H., Fischer, R., and Brock, R. (2007) A comprehensive model for the cellular uptake of cationic cell-penetrating peptides, Traffic 8, 848–866.

    Article  CAS  PubMed  Google Scholar 

  15. Maiolo, J. R., Ferrer, M., and Ottinger, E. A. (2005) Effects of cargo molecules on the cellular uptake of arginine-rich cell-penetrating peptides, Biochim Biophys Acta 1712, 161–172.

    Article  CAS  PubMed  Google Scholar 

  16. Manceur, A., Wu, A., and Audet, J. (2007) Flow cytometric screening of cell-penetrating peptides for their uptake into embryonic and adult stem cells, Anal Biochem 364, 51–59.

    Article  CAS  PubMed  Google Scholar 

  17. Nakase, I., Niwa, M., Takeuchi, T., Sonomura, K., Kawabata, N., Koike, Y., Takehashi, M., Tanaka, S., Ueda, K., Simpson, J. C., Jones, A. T., Sugiura, Y., and Futaki, S. (2004) Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement, Mol Ther 10, 1011–1022.

    Article  CAS  PubMed  Google Scholar 

  18. Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G., and Prochiantz, A. (1996) Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent, J Biol Chem 271, 18188–18193.

    Article  CAS  PubMed  Google Scholar 

  19. Binder, H., and Lindblom, G. (2003) Charge-dependent translocation of the Trojan peptide Penetratin across lipid membranes, Biophys J 85, 982–995.

    Article  CAS  PubMed  Google Scholar 

  20. Christiaens, B., Symoens, S., Verheyden, S., Engelborghs, Y., Joliot, A., Prochiantz, A., Vandekerckhove, J., Rosseneu, M., Vanloo, B., and Vanderheyden, S. (2002) Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes, Eur J Biochem 269, 2918–2926.

    Article  CAS  PubMed  Google Scholar 

  21. Persson, D., Thorén, P. E. G., and Nordén, B. (2001) Penetratin-induced aggregation and subsequent dissociation of negatively charged phospholipid vesicles, FEBS Lett 25245, 1–6.

    Google Scholar 

  22. Fragneto, G., Bellet-Amalric, E., Charitat, T., Dubos, P., Graner, F., and Perino-Galice, L. (2000) Neutron and X-ray reflectivity studies at solid-liquid interfaces: the interactions of a peptide with model membranes, Physica B 276–278, 501–502.

    Article  Google Scholar 

  23. Fragneto, G., Graner, F., Charitat, T., Dubos, P., and Bellet-Amalric, E. (2000) Interaction of the third helix of Antennapedia homeodomain with a deposited phospholipid bilayer: a neutron reflectivity structural study, Langmuir 16, 4581–4588.

    Article  CAS  Google Scholar 

  24. Björklund, J., Biverstahl, H., Gräslund, A., Mäler, L., and Brzezinski, P. (2006) Real-time transmembrane translocation of penetratin driven by light-generated proton pumping, Biophys J 91, L29–L31.

    Article  PubMed  Google Scholar 

  25. Magzoub, M., Pramanik, A., and Gräslund, A. (2005) Modeling the endosomal escape of cell-penetrating peptides: transmembrane pH gradient driven translocation across phospholipid bilayers, Biochemistry 44, 14890–14897.

    Article  CAS  PubMed  Google Scholar 

  26. Su, Y., Mani, R., and Hong, M. (2008) Asymmetric insertion of membrane proteins in lipid bilayers by solid-state NMR paramagnetic relaxation enhancement: a cell-penetrating peptide example, J Am Chem Soc 130, 8856–8864.

    Article  CAS  PubMed  Google Scholar 

  27. Barany-Wallje, E., Keller, S., Serowy, S., Geibel, S., Pohl, P., Bienert, M., and Dathe, M. (2005) A critical reassessment of penetratin translocation across lipid membranes, Biophys J 89, 2513–2521.

    Article  CAS  PubMed  Google Scholar 

  28. Persson, D., Thorén, P. E., Esbjorner, E. K., Goksor, M., Lincoln, P., and Norden, B. (2004) Vesicle size-dependent translocation of penetratin analogs across lipid membranes, Biochim Biophys Acta 1665, 142–155.

    Article  CAS  PubMed  Google Scholar 

  29. Terrone, D., Sang, S. L., Roudaia, L., and Silvius, J. R. (2003) Penetratin and related cell-penetrating cationic peptides can translocate across lipid bilayers in the presence of a transbilayer potential, Biochemistry 42, 13787–13799.

    Article  CAS  PubMed  Google Scholar 

  30. Drin, G., Mazel, M., Clair, P., Mathieu, D., Kaczorek, M., and Temsamani, J. (2001) Physico-chemical requirements for cellular uptake of pAntp peptide. Role of lipid-binding affinity, Eur J Biochem 268, 1304–1314.

    Article  CAS  PubMed  Google Scholar 

  31. Berlose, J. P., Convert, O., Derossi, D., Brunissen, A., and Chassaing, G. (1996) Conformational and associative behaviours of the third helix of antennapedia homeodomain in membrane-mimetic environments, Eur J Biochem 242, 372–386.

    Article  CAS  PubMed  Google Scholar 

  32. Lindberg, M., and Gräslund, A. (2001) The position of the cell penetrating peptide penetratin in SDS micelles determined by NMR, FEBS Lett 497, 39–44.

    Article  CAS  PubMed  Google Scholar 

  33. Magzoub, M., Kilk, K., Eriksson, L. E., Langel, Ü., and Gräslund, A. (2001) Interaction and structure induction of cell-penetrating peptides in the presence of phospholipid vesicles, Biochim Biophys Acta 1512, 77–89.

    Article  CAS  PubMed  Google Scholar 

  34. Bellet-Amalric, E., Blaudez, D., Desbat, B., Graner, F., Gauthier, F., and Renault, A. (2000) Interaction of the third helix of Antennapedia homeodomain and a phospholipid monolayer, studied by ellipsometry and PM-IRRAS at the air–water interface, Biochim Biophys Acta 1467, 131–143.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, W., and Smith, S. O. (2005) Mechanism of penetration of Antp(43-58) into membrane bilayers, Biochemistry 44, 10110–10118.

    Article  CAS  PubMed  Google Scholar 

  36. Christiaens, B., Grooten, J., Reusens, M., Joliot, A., Goethals, M., Vandekerckhove, J., Prochiantz, A., and Rosseneu, M. (2004) Membrane interaction and cellular internalization of penetratin peptides, Eur J Biochem 271, 1187–1197.

    Article  CAS  PubMed  Google Scholar 

  37. Esbjorner, E. K., Lincoln, P., and Norden, B. (2007) Counterion-mediated membrane penetration: cationic cell-penetrating peptides overcome born energy barrier by ion-pairing with phospholipids, Biochim Biophys Acta 1768, 1550–1558.

    Article  PubMed  Google Scholar 

  38. Dupont, E., Prochiantz, A., and Joliot, A. (2007) Identification of a signal peptide for unconventional secretion, J Biol Chem 282, 8994–9000.

    Article  CAS  PubMed  Google Scholar 

  39. Magzoub, M., Eriksson, L. E., and Gräslund, A. (2003) Comparison of the interaction, positioning, structure induction and membrane perturbation of cell-penetrating peptides and non-translocating variants with phospholipid vesicles, Biophys Chem 103, 271–288.

    Article  CAS  PubMed  Google Scholar 

  40. Drin, G., Demene, H., Temsamani, J., and Brasseur, R. (2001) Translocation of the pAntp peptide and its amphipathic analogue AP-2AL, Biochemistry 40, 1824–1834.

    Article  CAS  PubMed  Google Scholar 

  41. Ghibaudi, E., Boscolo, B., Inserra, G., Laurenti, E., Traversa, S., Barbero, L., and Ferrari, R. P. (2005) The interaction of the cell-penetrating peptide penetratin with heparin, heparansulfates and phospholipid vesicles investigated by ESR spectroscopy, J Pept Sci 11, 401–409.

    Article  CAS  PubMed  Google Scholar 

  42. Letoha, T., Gaal, S., Somlai, C., Czajlik, A., Perczel, A., and Penke, B. (2003) Membrane translocation of penetratin and its derivatives in different cell lines, J Mol Recognit 16, 272–279.

    Article  CAS  PubMed  Google Scholar 

  43. Letoha, T., Gaal, S., Somlai, C., Venkei, Z., Glavinas, H., Kusz, E., Duda, E., Czajlik, A., Petak, F., and Penke, B. (2005) Investigation of penetratin peptides. Part 2. In vitro uptake of penetratin and two of its derivatives, J Pept Sci 11, 805–811.

    Article  CAS  PubMed  Google Scholar 

  44. Fischer, R., Waizenegger, T., Kohler, K., and Brock, R. (2002) A quantitative validation of fluorophore-labelled cell-permeable peptide conjugates: fluorophore and cargo dependence of import, Biochim Biophys Acta 1564, 365–374.

    Article  CAS  PubMed  Google Scholar 

  45. Allinquant, B., Hantraye, P., Mailleux, P., Moya, K., Bouillot, C., and Prochiantz, A. (1995) Downregulation of amyloid precursor protein inhibits neurite outgrowth in vitro, J Cell Biol 128, 919–927.

    Article  CAS  PubMed  Google Scholar 

  46. Perez, F., Lledo, P. M., Karagogeos, D., Vincent, J. D., Prochiantz, A., and Ayala, J. (1994) Rab3A and Rab3B carboxy-terminal peptides are both potent and specific inhibitors of prolactin release by rat cultured anterior pituitary cells, Mol Endocrinol 8, 1278–1287.

    Article  CAS  PubMed  Google Scholar 

  47. Schutze-Redelmeier, M. P., Gournier, H., Garcia-Pons, F., Moussa, M., Joliot, A. H., Volovitch, M., Prochiantz, A., and Lemonnier, F. A. (1996) Introduction of exogenous antigens into the MHC class I processing and presentation pathway by Drosophila antennapedia homeodomain primes cytotoxic T cells in vivo, J Immunol 157, 650–655.

    CAS  PubMed  Google Scholar 

  48. Theodore, L., Derossi, D., Chassaing, G., Llirbat, B., Kubes, M., Jordan, P., Chneiweiss, H., Godement, P., and Prochiantz, A. (1995) Intraneuronal delivery of protein kinase C pseudosubstrate leads to growth cone collapse, J Neurosci 15, 7158–7167.

    CAS  PubMed  Google Scholar 

  49. Troy, C. M., Derossi, D., Prochiantz, A., Greene, L. A., and Shelanski, M. L. (1996) Downregulation of Cu/Zn superoxide dismutase leads to cell death via the nitric oxide-peroxynitrite pathway, J Neurosci 16, 253–261.

    CAS  PubMed  Google Scholar 

  50. Dupont, E. Prochiantz., A. and Joliot, A. (2005) Penetratins, in Handbook of Cell-Penetrating Peptides, pp. 5–28, CRC Press, Florida.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Joliot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dupont, E., Prochiantz, A., Joliot, A. (2011). Penetratin Story: An Overview. In: Langel, Ü. (eds) Cell-Penetrating Peptides. Methods in Molecular Biology, vol 683. Humana Press. https://doi.org/10.1007/978-1-60761-919-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-919-2_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-918-5

  • Online ISBN: 978-1-60761-919-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics