Advertisement

Penetratin Story: An Overview

  • Edmond Dupont
  • Alain Prochiantz
  • Alain JoliotEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 683)

Abstract

Cell-penetrating peptides are short, often hydrophilic peptides that get access to the intracellular milieu. They have aroused great interest both in academic and applied research. First, cellular internalization of CPPs often involves the crossing of a biological membrane (plasma or vesicular), thus challenging the view of the nonpermeability of these structures to large hydrophilic molecules. Secondly, CPPs can drive the internalization of hydrophilic cargoes into cells, a rate-limiting step in the development of many therapeutic substances. Interestingly, the two mostly used CPPs, TAT and Penetratin peptides, are derived from natural proteins, HIV Tat and Antennapedia homeoprotein, respectively. The identification of the Penetratin peptide, summarized in this review, is intimately linked to the study of its parental natural protein.

Key words

Penetratin Cell-penetrating peptide Homeodomain Homeoprotein 

References

  1. 1.
    Frankel, A. D., and Pabo, C. O. (1988) Cellular uptake of the Tat protein from human immunodeficiency virus, Cell 55, 1189–1193.CrossRefPubMedGoogle Scholar
  2. 2.
    Green, M., and Loewenstein, P. M. (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein, Cell 55, 1179–1188.CrossRefPubMedGoogle Scholar
  3. 3.
    Denis-Donini, S., Glowinski, J., and Prochiantz, A. (1984) Glial heterogeneity may define the three-dimensional shape of mouse mesencephalic dopaminergic neurones, Nature 307, 641–643.CrossRefPubMedGoogle Scholar
  4. 4.
    Chamak, B., Fellous, A., Glowinski, J., and Prochiantz, A. (1987) MAP2 expression and neuritic outgrowth and branching are coregulated through region-specific neuro-astroglial interactions, J Neurosci 7, 3163–3170.PubMedGoogle Scholar
  5. 5.
    Gehring, W. J., Qian, Y. Q., Billeter, M., Furukubo-Tokunaga, K., Schier, A. F., Resendez-Perez, D., Affolter, M., Otting, G., and Wuthrich, K. (1994) Homeodomain-DNA recognition, Cell 78, 211–223.CrossRefPubMedGoogle Scholar
  6. 6.
    Ayala, J., Touchot, N., Zahraoui, A., Tavitian, A., and Prochiantz, A. (1990) The product of rab2, a small GTP binding protein, increases neuronal adhesion, and neurite growth in vitro, Neuron 4, 797–805.CrossRefPubMedGoogle Scholar
  7. 7.
    Borasio, G. D., John, J., Wittinghofer, A., Barde, Y. A., Sendtner, M., and Heumann, R. (1989) ras p21 protein promotes survival and fiber outgrowth of cultured embryonic neurons, Neuron 2, 1087–1096.CrossRefPubMedGoogle Scholar
  8. 8.
    Joliot, A., Pernelle, C., Deagostini-Bazin, H., and Prochiantz, A. (1991) Antennapedia homeobox peptide regulates neural morphogenesis, Proc Natl Acad Sci U S A 88, 1864–1868.CrossRefPubMedGoogle Scholar
  9. 9.
    Bloch-Gallego, E., Le Roux, I., Joliot, A. H., Volovitch, M., Henderson, C. E., and Prochiantz, A. (1993) Antennapedia homeobox peptide enhances growth and branching of embryonic chicken motoneurons in vitro, J Cell Biol 120, 485–492.CrossRefPubMedGoogle Scholar
  10. 10.
    Le Roux, I., Joliot, A. H., Bloch-Gallego, E., Prochiantz, A., and Volovitch, M. (1993) Neurotrophic activity of the Antennapedia homeodomain depends on its specific DNA-binding properties, Proc Natl Acad Sci U S A 90, 9120–9124.CrossRefPubMedGoogle Scholar
  11. 11.
    Le Roux, I., Duharcourt, S., Volovitch, M., Prochiantz, A., and Ronchi, E. (1995) Promoter-specific regulation of gene expression by an exogenously added homedomain that promotes neurite growth, FEBS Lett 368, 311–314.CrossRefPubMedGoogle Scholar
  12. 12.
    Joliot, A. H., Triller, A., Volovitch, M., Pernelle, C., and Prochiantz, A. (1991) alpha-2,8-Polysialic acid is the neuronal surface receptor of antennapedia homeobox peptide, New Biol 3, 1121–1134.PubMedGoogle Scholar
  13. 13.
    Derossi, D., Joliot, A. H., Chassaing, G., and Prochiantz, A. (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes, J Biol Chem 269, 10444–10450.PubMedGoogle Scholar
  14. 14.
    Duchardt, F., Fotin-Mleczek, M., Schwarz, H., Fischer, R., and Brock, R. (2007) A comprehensive model for the cellular uptake of cationic cell-penetrating peptides, Traffic 8, 848–866.CrossRefPubMedGoogle Scholar
  15. 15.
    Maiolo, J. R., Ferrer, M., and Ottinger, E. A. (2005) Effects of cargo molecules on the cellular uptake of arginine-rich cell-penetrating peptides, Biochim Biophys Acta 1712, 161–172.CrossRefPubMedGoogle Scholar
  16. 16.
    Manceur, A., Wu, A., and Audet, J. (2007) Flow cytometric screening of cell-penetrating peptides for their uptake into embryonic and adult stem cells, Anal Biochem 364, 51–59.CrossRefPubMedGoogle Scholar
  17. 17.
    Nakase, I., Niwa, M., Takeuchi, T., Sonomura, K., Kawabata, N., Koike, Y., Takehashi, M., Tanaka, S., Ueda, K., Simpson, J. C., Jones, A. T., Sugiura, Y., and Futaki, S. (2004) Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement, Mol Ther 10, 1011–1022.CrossRefPubMedGoogle Scholar
  18. 18.
    Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G., and Prochiantz, A. (1996) Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent, J Biol Chem 271, 18188–18193.CrossRefPubMedGoogle Scholar
  19. 19.
    Binder, H., and Lindblom, G. (2003) Charge-dependent translocation of the Trojan peptide Penetratin across lipid membranes, Biophys J 85, 982–995.CrossRefPubMedGoogle Scholar
  20. 20.
    Christiaens, B., Symoens, S., Verheyden, S., Engelborghs, Y., Joliot, A., Prochiantz, A., Vandekerckhove, J., Rosseneu, M., Vanloo, B., and Vanderheyden, S. (2002) Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes, Eur J Biochem 269, 2918–2926.CrossRefPubMedGoogle Scholar
  21. 21.
    Persson, D., Thorén, P. E. G., and Nordén, B. (2001) Penetratin-induced aggregation and subsequent dissociation of negatively charged phospholipid vesicles, FEBS Lett 25245, 1–6.Google Scholar
  22. 22.
    Fragneto, G., Bellet-Amalric, E., Charitat, T., Dubos, P., Graner, F., and Perino-Galice, L. (2000) Neutron and X-ray reflectivity studies at solid-liquid interfaces: the interactions of a peptide with model membranes, Physica B 276–278, 501–502.CrossRefGoogle Scholar
  23. 23.
    Fragneto, G., Graner, F., Charitat, T., Dubos, P., and Bellet-Amalric, E. (2000) Interaction of the third helix of Antennapedia homeodomain with a deposited phospholipid bilayer: a neutron reflectivity structural study, Langmuir 16, 4581–4588.CrossRefGoogle Scholar
  24. 24.
    Björklund, J., Biverstahl, H., Gräslund, A., Mäler, L., and Brzezinski, P. (2006) Real-time transmembrane translocation of penetratin driven by light-generated proton pumping, Biophys J 91, L29–L31.CrossRefPubMedGoogle Scholar
  25. 25.
    Magzoub, M., Pramanik, A., and Gräslund, A. (2005) Modeling the endosomal escape of cell-penetrating peptides: transmembrane pH gradient driven translocation across phospholipid bilayers, Biochemistry 44, 14890–14897.CrossRefPubMedGoogle Scholar
  26. 26.
    Su, Y., Mani, R., and Hong, M. (2008) Asymmetric insertion of membrane proteins in lipid bilayers by solid-state NMR paramagnetic relaxation enhancement: a cell-penetrating peptide example, J Am Chem Soc 130, 8856–8864.CrossRefPubMedGoogle Scholar
  27. 27.
    Barany-Wallje, E., Keller, S., Serowy, S., Geibel, S., Pohl, P., Bienert, M., and Dathe, M. (2005) A critical reassessment of penetratin translocation across lipid membranes, Biophys J 89, 2513–2521.CrossRefPubMedGoogle Scholar
  28. 28.
    Persson, D., Thorén, P. E., Esbjorner, E. K., Goksor, M., Lincoln, P., and Norden, B. (2004) Vesicle size-dependent translocation of penetratin analogs across lipid membranes, Biochim Biophys Acta 1665, 142–155.CrossRefPubMedGoogle Scholar
  29. 29.
    Terrone, D., Sang, S. L., Roudaia, L., and Silvius, J. R. (2003) Penetratin and related cell-penetrating cationic peptides can translocate across lipid bilayers in the presence of a transbilayer potential, Biochemistry 42, 13787–13799.CrossRefPubMedGoogle Scholar
  30. 30.
    Drin, G., Mazel, M., Clair, P., Mathieu, D., Kaczorek, M., and Temsamani, J. (2001) Physico-chemical requirements for cellular uptake of pAntp peptide. Role of lipid-binding affinity, Eur J Biochem 268, 1304–1314.CrossRefPubMedGoogle Scholar
  31. 31.
    Berlose, J. P., Convert, O., Derossi, D., Brunissen, A., and Chassaing, G. (1996) Conformational and associative behaviours of the third helix of antennapedia homeodomain in membrane-mimetic environments, Eur J Biochem 242, 372–386.CrossRefPubMedGoogle Scholar
  32. 32.
    Lindberg, M., and Gräslund, A. (2001) The position of the cell penetrating peptide penetratin in SDS micelles determined by NMR, FEBS Lett 497, 39–44.CrossRefPubMedGoogle Scholar
  33. 33.
    Magzoub, M., Kilk, K., Eriksson, L. E., Langel, Ü., and Gräslund, A. (2001) Interaction and structure induction of cell-penetrating peptides in the presence of phospholipid vesicles, Biochim Biophys Acta 1512, 77–89.CrossRefPubMedGoogle Scholar
  34. 34.
    Bellet-Amalric, E., Blaudez, D., Desbat, B., Graner, F., Gauthier, F., and Renault, A. (2000) Interaction of the third helix of Antennapedia homeodomain and a phospholipid monolayer, studied by ellipsometry and PM-IRRAS at the air–water interface, Biochim Biophys Acta 1467, 131–143.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang, W., and Smith, S. O. (2005) Mechanism of penetration of Antp(43-58) into membrane bilayers, Biochemistry 44, 10110–10118.CrossRefPubMedGoogle Scholar
  36. 36.
    Christiaens, B., Grooten, J., Reusens, M., Joliot, A., Goethals, M., Vandekerckhove, J., Prochiantz, A., and Rosseneu, M. (2004) Membrane interaction and cellular internalization of penetratin peptides, Eur J Biochem 271, 1187–1197.CrossRefPubMedGoogle Scholar
  37. 37.
    Esbjorner, E. K., Lincoln, P., and Norden, B. (2007) Counterion-mediated membrane penetration: cationic cell-penetrating peptides overcome born energy barrier by ion-pairing with phospholipids, Biochim Biophys Acta 1768, 1550–1558.CrossRefPubMedGoogle Scholar
  38. 38.
    Dupont, E., Prochiantz, A., and Joliot, A. (2007) Identification of a signal peptide for unconventional secretion, J Biol Chem 282, 8994–9000.CrossRefPubMedGoogle Scholar
  39. 39.
    Magzoub, M., Eriksson, L. E., and Gräslund, A. (2003) Comparison of the interaction, positioning, structure induction and membrane perturbation of cell-penetrating peptides and non-translocating variants with phospholipid vesicles, Biophys Chem 103, 271–288.CrossRefPubMedGoogle Scholar
  40. 40.
    Drin, G., Demene, H., Temsamani, J., and Brasseur, R. (2001) Translocation of the pAntp peptide and its amphipathic analogue AP-2AL, Biochemistry 40, 1824–1834.CrossRefPubMedGoogle Scholar
  41. 41.
    Ghibaudi, E., Boscolo, B., Inserra, G., Laurenti, E., Traversa, S., Barbero, L., and Ferrari, R. P. (2005) The interaction of the cell-penetrating peptide penetratin with heparin, heparansulfates and phospholipid vesicles investigated by ESR spectroscopy, J Pept Sci 11, 401–409.CrossRefPubMedGoogle Scholar
  42. 42.
    Letoha, T., Gaal, S., Somlai, C., Czajlik, A., Perczel, A., and Penke, B. (2003) Membrane translocation of penetratin and its derivatives in different cell lines, J Mol Recognit 16, 272–279.CrossRefPubMedGoogle Scholar
  43. 43.
    Letoha, T., Gaal, S., Somlai, C., Venkei, Z., Glavinas, H., Kusz, E., Duda, E., Czajlik, A., Petak, F., and Penke, B. (2005) Investigation of penetratin peptides. Part 2. In vitro uptake of penetratin and two of its derivatives, J Pept Sci 11, 805–811.CrossRefPubMedGoogle Scholar
  44. 44.
    Fischer, R., Waizenegger, T., Kohler, K., and Brock, R. (2002) A quantitative validation of fluorophore-labelled cell-permeable peptide conjugates: fluorophore and cargo dependence of import, Biochim Biophys Acta 1564, 365–374.CrossRefPubMedGoogle Scholar
  45. 45.
    Allinquant, B., Hantraye, P., Mailleux, P., Moya, K., Bouillot, C., and Prochiantz, A. (1995) Downregulation of amyloid precursor protein inhibits neurite outgrowth in vitro, J Cell Biol 128, 919–927.CrossRefPubMedGoogle Scholar
  46. 46.
    Perez, F., Lledo, P. M., Karagogeos, D., Vincent, J. D., Prochiantz, A., and Ayala, J. (1994) Rab3A and Rab3B carboxy-terminal peptides are both potent and specific inhibitors of prolactin release by rat cultured anterior pituitary cells, Mol Endocrinol 8, 1278–1287.CrossRefPubMedGoogle Scholar
  47. 47.
    Schutze-Redelmeier, M. P., Gournier, H., Garcia-Pons, F., Moussa, M., Joliot, A. H., Volovitch, M., Prochiantz, A., and Lemonnier, F. A. (1996) Introduction of exogenous antigens into the MHC class I processing and presentation pathway by Drosophila antennapedia homeodomain primes cytotoxic T cells in vivo, J Immunol 157, 650–655.PubMedGoogle Scholar
  48. 48.
    Theodore, L., Derossi, D., Chassaing, G., Llirbat, B., Kubes, M., Jordan, P., Chneiweiss, H., Godement, P., and Prochiantz, A. (1995) Intraneuronal delivery of protein kinase C pseudosubstrate leads to growth cone collapse, J Neurosci 15, 7158–7167.PubMedGoogle Scholar
  49. 49.
    Troy, C. M., Derossi, D., Prochiantz, A., Greene, L. A., and Shelanski, M. L. (1996) Downregulation of Cu/Zn superoxide dismutase leads to cell death via the nitric oxide-peroxynitrite pathway, J Neurosci 16, 253–261.PubMedGoogle Scholar
  50. 50.
    Dupont, E. Prochiantz., A. and Joliot, A. (2005) Penetratins, in Handbook of Cell-Penetrating Peptides, pp. 5–28, CRC Press, Florida.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Homeoprotein Cell BiologyEcole normale supérieure and Collège de FranceParisFrance
  2. 2.Chaire des processus morphogénétiquesEcole normale supérieure and Collège de FranceParisFrance
  3. 3.Ecole Normale SupérieureParisFrance

Personalised recommendations