Advertisement

Mimicry of Protein Function with Cell-Penetrating Peptides

  • Henrik J. JohanssonEmail author
  • Samir EL Andaloussi
  • Ülo Langel
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 683)

Abstract

Proteins are essential components of cellular processes inside cells, and their interactions between each other and with genes are important for the normal physiological functioning of cells as well as for disease states. Modulating protein interactions by different means can potentially control these interactions and restore normal function to diseased cells. The ways to do so are multiple, and such efforts often begin with knowledge of potential target proteins in order to devise mediators that retain the function of the original protein, i.e., mimic the protein functions. An alternative strategy is to utilize protein mimics to inhibit target proteins rather than restoring the activity of a protein. The vast majority of protein ­mimics exploited to date have been designed to inhibit the activity of oncogenes or activate tumor suppressors for the purpose of tumor therapy. These protein mimics are usually based on small organic compounds or peptides, derived from interaction surfaces of the proteins, and in some cases, full proteins have been exploited. Although peptides and proteins are naturally highly specific and efficient inside cells, they suffer from low bioavailability resulting from their inability to enter cells. One strategy increasingly employed to facilitate the internalization of peptides and proteins has been to chemically conjugate them to cell-penetrating peptides (CPP) or to recombinantly express protein–CPP fusion constructs.

This chapter provides an overview of some of the aspects of perturbing and mimicking protein interactions using peptides and proteins and CPP as transport vectors.

Key words

Cell-penetrating peptide Protein mimicry Protein interaction Linear motif 

Notes

Acknowledgments

The work was supported by grants from Swedish Research Council (VR-NT), Center for Biomembrane Research, Stockholm, and Knut and Alice Wallenberg’s Foundation.

References

  1. 1.
    Harrison, A., Pearl, F., Sillitoe, I., Slidel, T., Mott, R., Thornton, J., and Orengo, C. (2003) Recognizing the fold of a protein structure, Bioinformatics 19, 1748–1759.CrossRefPubMedGoogle Scholar
  2. 2.
    Wolf, Y. I., Grishin, N. V., and Koonin, E. V. (2000) Estimating the number of protein folds and families from complete genome data, J Mol Biol 299, 897–905.CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang, C. T. (1997) Relations of the numbers of protein sequences, families and folds, Protein Eng 10, 757–761.CrossRefPubMedGoogle Scholar
  4. 4.
    Chene, P. (2003) Inhibiting the p53-MDM2 interaction: an important target for cancer therapy, Nat Rev Cancer 3, 102–109.CrossRefPubMedGoogle Scholar
  5. 5.
    Vassilev, L. T., Vu, B. T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C., Fotouhi, N., and Liu, E. A. (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2, Science 303, 844–848.CrossRefPubMedGoogle Scholar
  6. 6.
    Neduva, V., and Russell, R. B. (2006) Peptides mediating interaction networks: new leads at last, Curr Opin Biotechnol 17, 465–471.CrossRefPubMedGoogle Scholar
  7. 7.
    Neduva, V., and Russell, R. B. (2005) Linear motifs: evolutionary interaction switches, FEBS Lett 579, 3342–3345.CrossRefPubMedGoogle Scholar
  8. 8.
    Edwards, R. J., Moran, N., Devocelle, M., Kiernan, A., Meade, G., Signac, W., Foy, M., Park, S. D., Dunne, E., Kenny, D., and Shields, D. C. (2007) Bioinformatic discovery of novel bioactive peptides, Nat Chem Biol 3, 108–112.CrossRefPubMedGoogle Scholar
  9. 9.
    Lohrum, M. A., Ashcroft, M., Kubbutat, M. H., and Vousden, K. H. (2000) Contribution of two independent MDM2-binding domains in p14(ARF) to p53 stabilization, Curr Biol 10, 539–542.CrossRefPubMedGoogle Scholar
  10. 10.
    Midgley, C. A., Desterro, J. M., Saville, M. K., Howard, S., Sparks, A., Hay, R. T., and Lane, D. P. (2000) An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo, Oncogene 19, 2312–2323.CrossRefPubMedGoogle Scholar
  11. 11.
    Frankel, A. D., and Pabo, C. O. (1988) Cellular uptake of the tat protein from human immunodeficiency virus, Cell 55, 1189–1193.CrossRefPubMedGoogle Scholar
  12. 12.
    Green, M., and Loewenstein, P. M. (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein, Cell 55, 1179–1188.CrossRefPubMedGoogle Scholar
  13. 13.
    Joliot, A., Pernelle, C., Deagostini-Bazin, H., and Prochiantz, A. (1991) Antennapedia homeobox peptide regulates neural morphogenesis, Proc Natl Acad Sci USA 88, 1864–1868.CrossRefPubMedGoogle Scholar
  14. 14.
    Alarcon-Segovia, D., Ruiz-Arguelles, A., and Fishbein, E. (1978) Antibody to nuclear ribonucleoprotein penetrates live human mononuclear cells through Fc receptors, Nature 271, 67–69.CrossRefPubMedGoogle Scholar
  15. 15.
    Amsellem, S., Pflumio, F., Bardinet, D., Izac, B., Charneau, P., Romeo, P. H., Dubart-Kupperschmitt, A., and Fichelson, S. (2003) Ex vivo expansion of human hematopoietic stem cells by direct delivery of the HOXB4 homeoprotein, Nat Med 9, 1423–1427.CrossRefPubMedGoogle Scholar
  16. 16.
    Brunet, I., Weinl, C., Piper, M., Trembleau, A., Volovitch, M., Harris, W., Prochiantz, A., and Holt, C. (2005) The transcription factor Engrailed-2 guides retinal axons, Nature 438, 94–98.CrossRefPubMedGoogle Scholar
  17. 17.
    Lu, J., Li, G., Lan, M. S., Zhang, S., Fan, W., Wang, H., and Lu, D. (2007) Pax4 paired domain mediates direct protein transduction into mammalian cells, Endocrinology 148, 5558–5565.CrossRefPubMedGoogle Scholar
  18. 18.
    Chen, J., Li, G., Lu, J., Chen, L., Huang, Y., Wu, H., Zhang, J., and Lu, D. (2006) A novel type of PTD, common helix-loop-helix motif, could efficiently mediate protein transduction into mammalian cells, Biochem Biophys Res Commun 347, 931–940.CrossRefPubMedGoogle Scholar
  19. 19.
    Noguchi, H., Matsumoto, S., Okitsu, T., Iwanaga, Y., Yonekawa, Y., Nagata, H., Matsushita, M., Wei, F. Y., Matsui, H., Minami, K., Seino, S., Masui, Y., Futaki, S., and Tanaka, K. (2005) PDX-1 protein is internalized by lipid raft-dependent macropinocytosis, Cell Transplant 14, 637–645.CrossRefPubMedGoogle Scholar
  20. 20.
    Helland, D. E., Welles, J. L., Caputo, A., and Haseltine, W. A. (1991) Transcellular transactivation by the human immunodeficiency virus type 1 tat protein, J Virol 65, 4547–4549.PubMedGoogle Scholar
  21. 21.
    Joliot, A., Maizel, A., Rosenberg, D., Trembleau, A., Dupas, S., Volovitch, M., and Prochiantz, A. (1998) Identification of a signal sequence necessary for the unconventional secretion of Engrailed homeoprotein, Curr Biol 8, 856–863.CrossRefPubMedGoogle Scholar
  22. 22.
    Yin, W., Cao, G., Johnnides, M. J., Signore, A. P., Luo, Y., Hickey, R. W., and Chen, J. (2006) TAT-mediated delivery of Bcl-xL protein is neuroprotective against neonatal hypoxic-ischemic brain injury via inhibition of caspases and AIF, Neurobiol Dis 21, 358–371.CrossRefPubMedGoogle Scholar
  23. 23.
    Lissy, N. A., Davis, P. K., Irwin, M., Kaelin, W. G., and Dowdy, S. F. (2000) A common E2F-1 and p73 pathway mediates cell death induced by TCR activation, Nature 407, 642–645.CrossRefPubMedGoogle Scholar
  24. 24.
    Gong, B., Cao, Z., Zheng, P., Vitolo, O. V., Liu, S., Staniszewski, A., Moolman, D., Zhang, H., Shelanski, M., and Arancio, O. (2006) Ubiquitin hydrolase Uch-L1 rescues beta-amyloid-induced decreases in synaptic function and contextual memory, Cell 126, 775–788.CrossRefPubMedGoogle Scholar
  25. 25.
    Morris, M. C., Depollier, J., Mery, J., Heitz, F., and Divita, G. (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells, Nat Biotechnol 19, 1173–1176.CrossRefPubMedGoogle Scholar
  26. 26.
    EL-Andaloussi, S., Järver, P., Johansson, H. J., and Langel, Ü. (2007) Cargo-dependent cytotoxicity and delivery efficacy of cell-­penetrating peptides: a comparative study, Biochem J 407, 285–292.CrossRefPubMedGoogle Scholar
  27. 27.
    Dietz, G. P., and Bähr, M. (2004) Delivery of bioactive molecules into the cell: the Trojan horse approach, Mol Cell Neurosci 27, 85–131.CrossRefPubMedGoogle Scholar
  28. 28.
    Noguchi, H., Matsushita, M., Okitsu, T., Moriwaki, A., Tomizawa, K., Kang, S., Li, S. T., Kobayashi, N., Matsumoto, S., Tanaka, K., Tanaka, N., and Matsui, H. (2004) A new cell-permeable peptide allows successful allogeneic islet transplantation in mice, Nat Med 10, 305–309.CrossRefPubMedGoogle Scholar
  29. 29.
    Yu, H., Sliedregt-Bol, K., Overkleeft, H., van der Marel, G. A., van Berkel, T. J., and Biessen, E. A. (2006) Therapeutic potential of a ­synthetic peptide inhibitor of nuclear factor of activated T cells as antirestenotic agent, Arterioscler Thromb Vasc Biol 26, 1531–1537.CrossRefPubMedGoogle Scholar
  30. 30.
    Plescia, J., Salz, W., Xia, F., Pennati, M., Zaffaroni, N., Daidone, M. G., Meli, M., Dohi, T., Fortugno, P., Nefedova, Y., Gabrilovich, D. I., Colombo, G., and Altieri, D. C. (2005) Rational design of shepherdin, a novel anticancer agent, Cancer Cell 7, 457–468.CrossRefPubMedGoogle Scholar
  31. 31.
    Arnt, C. R., Chiorean, M. V., Heldebrant, M. P., Gores, G. J., and Kaufmann, S. H. (2002) Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ, J Biol Chem 277, 44236–44243.CrossRefPubMedGoogle Scholar
  32. 32.
    Fulda, S., Wick, W., Weller, M., and Debatin, K. M. (2002) Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo, Nat Med 8, 808–815.PubMedGoogle Scholar
  33. 33.
    Baker, R. D., Howl, J., and Nicholl, I. D. (2007) A sychnological cell penetrating ­peptide mimic of p21(WAF1/CIP1) is pro-apoptogenic, Peptides 28, 731–740.CrossRefPubMedGoogle Scholar
  34. 34.
    Tan, M., Lan, K. H., Yao, J., Lu, C. H., Sun, M., Neal, C. L., Lu, J., and Yu, D. (2006) Selective inhibition of ErbB2-overexpressing breast cancer in vivo by a novel TAT-based ErbB2-targeting signal transducers and activators of transcription 3-blocking peptide, Cancer Res 66, 3764–3772.CrossRefPubMedGoogle Scholar
  35. 35.
    Sawada, M., Hayes, P., and Matsuyama, S. (2003) Cytoprotective membrane-permeable peptides designed from the Bax-binding domain of Ku70, Nat Cell Biol 5, 352–357.CrossRefPubMedGoogle Scholar
  36. 36.
    Yoshida, T., Tomioka, I., Nagahara, T., Holyst, T., Sawada, M., Hayes, P., Gama, V., Okuno, M., Chen, Y., Abe, Y., Kanouchi, T., Sasada, H., Wang, D., Yokota, T., Sato, E., and Matsuyama, S. (2004) Bax-inhibiting peptide derived from mouse and rat Ku70, Biochem Biophys Res Commun 321, 961–966.CrossRefPubMedGoogle Scholar
  37. 37.
    Howl, J., and Jones, S. (2008) Proteomimetic cell penetrating peptides, Int J Pept Res Ther 14, 359–366.CrossRefGoogle Scholar
  38. 38.
    Zindy, F., Eischen, C. M., Randle, D. H., Kamijo, T., Cleveland, J. L., Sherr, C. J., and Roussel, M. F. (1998) Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization, Genes Dev 12, 2424–2433.CrossRefPubMedGoogle Scholar
  39. 39.
    Palmero, I., Pantoja, C., and Serrano, M. (1998) p19ARF links the tumour suppressor p53 to Ras, Nature 395, 125–126.CrossRefPubMedGoogle Scholar
  40. 40.
    Ameyar-Zazoua, M., Wisniewska, M. B., Bakiri, L., Wagner, E. F., Yaniv, M., and Weitzman, J. B. (2005) AP-1 dimers regulate transcription of the p14/p19ARF tumor suppressor gene, Oncogene 24, 2298–2306.CrossRefPubMedGoogle Scholar
  41. 41.
    Bates, S., Phillips, A. C., Clark, P. A., Stott, F., Peters, G., Ludwig, R. L., and Vousden, K. H. (1998) p14ARF links the tumour suppressors RB and p53, Nature 395, 124–125.CrossRefPubMedGoogle Scholar
  42. 42.
    Bothner, B., Lewis, W. S., DiGiammarino, E. L., Weber, J. D., Bothner, S. J., and Kriwacki, R. W. (2001) Defining the molecular basis of Arf and Hdm2 interactions, J Mol Biol 314, 263–277.CrossRefPubMedGoogle Scholar
  43. 43.
    DiGiammarino, E. L., Filippov, I., Weber, J. D., Bothner, B., and Kriwacki, R. W. (2001) Solution structure of the p53 regulatory domain of the p19Arf tumor suppressor protein, Biochemistry 40, 2379–2386.CrossRefPubMedGoogle Scholar
  44. 44.
    Johansson, H. J., EL-Andaloussi, S., Holm, T., Mäe, M., Janes, J., Maimets, T., and Langel, Ü. (2008) Characterization of a novel cytotoxic cell-penetrating peptide derived from p14ARF protein, Mol Ther 16, 115–123.CrossRefPubMedGoogle Scholar
  45. 45.
    EL-Andaloussi, S., Johansson, H. J., Holm, T., and Langel, Ü. (2007) A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids, Mol Ther 15, 1820–1826.CrossRefPubMedGoogle Scholar
  46. 46.
    Elliott, G., and O’Hare, P. (1997) Intercellular trafficking and protein delivery by a herpesvirus structural protein, Cell 88, 223–233.CrossRefPubMedGoogle Scholar
  47. 47.
    Sonnier, L., Le Pen, G., Hartmann, A., Bizot, J. C., Trovero, F., Krebs, M. O., and Prochiantz, A. (2007) Progressive loss of dopaminergic neurons in the ventral midbrain of adult mice heterozygote for Engrailed1, J Neurosci 27, 1063–1071.CrossRefPubMedGoogle Scholar
  48. 48.
    Noguchi, H., Kaneto, H., Weir, G. C., and Bonner-Weir, S. (2003) PDX-1 protein containing its own antennapedia-like protein transduction domain can transduce pancreatic duct and islet cells, Diabetes 52, 1732–1737.CrossRefPubMedGoogle Scholar
  49. 49.
    Lesaffre, B., Joliot, A., Prochiantz, A., and Volovitch, M. (2007) Direct non-cell autonomous Pax6 activity regulates eye development in the zebrafish, Neural Dev 2, 2.CrossRefPubMedGoogle Scholar
  50. 50.
    Guelen, L., Paterson, H., Gaken, J., Meyers, M., Farzaneh, F., and Tavassoli, M. (2004) TAT-apoptin is efficiently delivered and induces apoptosis in cancer cells, Oncogene 23, 1153–1165.CrossRefPubMedGoogle Scholar
  51. 51.
    Lai, Y., Du, L., Dunsmore, K. E., Jenkins, L. W., Wong, H. R., and Clark, R. S. (2005) Selectively increasing inducible heat shock protein 70 via TAT-protein transduction protects neurons from nitrosative stress and excitotoxicity, J Neurochem 94, 360–366.CrossRefPubMedGoogle Scholar
  52. 52.
    Kilic, U., Kilic, E., Dietz, G. P., and Bahr, M. (2003) Intravenous TAT-GDNF is protective after focal cerebral ischemia in mice, Stroke 34, 1304–1310.CrossRefPubMedGoogle Scholar
  53. 53.
    Toro, A., and Grunebaum, E. (2006) TAT-mediated intracellular delivery of purine nucleoside phosphorylase corrects its deficiency in mice, J Clin Invest 116, 2717–2726.CrossRefPubMedGoogle Scholar
  54. 54.
    Michiue, H., Tomizawa, K., Wei, F. Y., Matsushita, M., Lu, Y. F., Ichikawa, T., Tamiya, T., Date, I., and Matsui, H. (2005) The NH2 terminus of influenza virus hemagglutinin-2 subunit peptides enhances the antitumor potency of polyarginine-mediated p53 protein transduction, J Biol Chem 280, 8285–8289.CrossRefPubMedGoogle Scholar
  55. 55.
    Michiue, H., Tomizawa, K., Matsushita, M., Tamiya, T., Lu, Y. F., Ichikawa, T., Date, I., and Matsui, H. (2005) Ubiquitination-resistant p53 protein transduction therapy facilitates anti-cancer effect on the growth of human malignant glioma cells, FEBS Lett 579, 3965–3969.CrossRefPubMedGoogle Scholar
  56. 56.
    Myrberg, H., Lindgren, M., and Langel, Ü. (2007) Protein delivery by the cell-penetrating peptide YTA2, Bioconjug Chem 18, 170–174.CrossRefPubMedGoogle Scholar
  57. 57.
    Terada, H., Matsushita, M., Lu, Y. F., Shirai, T., Li, S. T., Tomizawa, K., Moriwaki, A., Nishio, S., Date, I., Ohmoto, T., and Matsui, H. (2003) Inhibition of excitatory neuronal cell death by cell-permeable calcineurin autoinhibitory peptide, J Neurochem 87, 1145–1151.CrossRefPubMedGoogle Scholar
  58. 58.
    Gusarova, G. A., Wang, I. C., Major, M. L., Kalinichenko, V. V., Ackerson, T., Petrovic, V., and Costa, R. H. (2007) A cell-­penetrating ARF peptide inhibitor of FoxM1 in mouse hepatocellular carcinoma treatment, J Clin Invest 117, 99–111.CrossRefPubMedGoogle Scholar
  59. 59.
    McCusker, C. T., Wang, Y., Shan, J., Kinyanjui, M. W., Villeneuve, A., Michael, H., and Fixman, E. D. (2007) Inhibition of experimental allergic airways disease by local application of a cell-penetrating dominant-negative STAT-6 peptide, J Immunol 179, 2556–2564.PubMedGoogle Scholar
  60. 60.
    Xu, W., Wong, T. P., Chery, N., Gaertner, T., Wang, Y. T., and Baudry, M. (2007) Calpain-mediated mGluR1alpha truncation: a key step in excitotoxicity, Neuron 53, 399–412.CrossRefPubMedGoogle Scholar
  61. 61.
    Polo, J. M., Dell’Oso, T., Ranuncolo, S. M., Cerchietti, L., Beck, D., Da Silva, G. F., Prive, G. G., Licht, J. D., and Melnick, A. (2004) Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells, Nat Med 10, 1329–1335.CrossRefPubMedGoogle Scholar
  62. 62.
    Stockton, R. A., Schaefer, E., and Schwartz, M. A. (2004) p21-activated kinase regulates endothelial permeability through modulation of contractility, J Biol Chem 279, 46621–46630.CrossRefPubMedGoogle Scholar
  63. 63.
    Kiosses, W. B., Hood, J., Yang, S., Gerritsen, M. E., Cheresh, D. A., Alderson, N., and Schwartz, M. A. (2002) A dominant-negative p65 PAK peptide inhibits angiogenesis, Circ Res 90, 697–702.CrossRefPubMedGoogle Scholar
  64. 64.
    Perea, S. E., Reyes, O., Puchades, Y., Mendoza, O., Vispo, N. S., Torrens, I., Santos, A., Silva, R., Acevedo, B., Lopez, E., Falcon, V., and Alonso, D. F. (2004) Antitumor effect of a novel proapoptotic peptide that impairs the phosphorylation by the protein kinase 2 (casein kinase 2), Cancer Res 64, 7127–7129.CrossRefPubMedGoogle Scholar
  65. 65.
    Perera, Y., Farina, H. G., Hernandez, I., Mendoza, O., Serrano, J. M., Reyes, O., Gomez, D. E., Gomez, R. E., Acevedo, B. E., Alonso, D. F., and Perea, S. E. (2008) Systemic administration of a peptide that impairs the protein kinase (CK2) phosphorylation reduces solid tumor growth in mice, Int J Cancer 122, 57–62.CrossRefPubMedGoogle Scholar
  66. 66.
    Aarts, M., Liu, Y., Liu, L., Besshoh, S., Arundine, M., Gurd, J. W., Wang, Y. T., Salter, M. W., and Tymianski, M. (2002) Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions, Science 298, 846–850.CrossRefPubMedGoogle Scholar
  67. 67.
    Dasgupta, P., Sun, J., Wang, S., Fusaro, G., Betts, V., Padmanabhan, J., Sebti, S. M., and Chellappan, S. P. (2004) Disruption of the Rb – Raf-1 interaction inhibits tumor growth and angiogenesis, Mol Cell Biol 24, 9527–9541.CrossRefPubMedGoogle Scholar
  68. 68.
    Hoareau, C., Borrell, V., Soriano, E., Krebs, M. O., Prochiantz, A., and Allinquant, B. (2008) APP cytoplasmic domain antagonizes reelin neurite outgrowth inhibition of hippocampal neurons, Neurobiol Aging 29(4), 542–553.CrossRefPubMedGoogle Scholar
  69. 69.
    Giorello, L., Clerico, L., Pescarolo, M. P., Vikhanskaya, F., Salmona, M., Colella, G., Bruno, S., Mancuso, T., Bagnasco, L., Russo, P., and Parodi, S. (1998) Inhibition of cancer cell growth and c-Myc transcriptional activity by a c-Myc helix 1-type peptide fused to an internalization sequence, Cancer Res 58, 3654–3659.PubMedGoogle Scholar
  70. 70.
    Holinger, E. P., Chittenden, T., and Lutz, R. J. (1999) Bak BH3 peptides antagonize Bcl-xL function and induce apoptosis through cytochrome c-independent activation of caspases, J Biol Chem 274, 13298–13304.CrossRefPubMedGoogle Scholar
  71. 71.
    Vieira, H. L., Boya, P., Cohen, I., El Hamel, C., Haouzi, D., Druillenec, S., Belzacq, A. S., Brenner, C., Roques, B., and Kroemer, G. (2002) Cell permeable BH3-peptides overcome the cytoprotective effect of Bcl-2 and Bcl-X(L), Oncogene 21, 1963–1977.CrossRefPubMedGoogle Scholar
  72. 72.
    Jimi, E., Aoki, K., Saito, H., D’Acquisto, F., May, M. J., Nakamura, I., Sudo, T., Kojima, T., Okamoto, F., Fukushima, H., Okabe, K., Ohya, K., and Ghosh, S. (2004) Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo, Nat Med 10, 617–624.CrossRefPubMedGoogle Scholar
  73. 73.
    May, M. J., D’Acquisto, F., Madge, L. A., Glockner, J., Pober, J. S., and Ghosh, S. (2000) Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex, Science 289, 1550–1554.CrossRefPubMedGoogle Scholar
  74. 74.
    Borsello, T., Clarke, P. G., Hirt, L., Vercelli, A., Repici, M., Schorderet, D. F., Bogousslavsky, J., and Bonny, C. (2003) A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia, Nat Med 9, 1180–1186.CrossRefPubMedGoogle Scholar
  75. 75.
    Kaneto, H., Nakatani, Y., Miyatsuka, T., Kawamori, D., Matsuoka, T. A., Matsuhisa, M., Kajimoto, Y., Ichijo, H., Yamasaki, Y., and Hori, M. (2004) Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide, Nat Med 10, 1128–1132.CrossRefPubMedGoogle Scholar
  76. 76.
    Bonny, C., Oberson, A., Negri, S., Sauser, C., and Schorderet, D. F. (2001) Cell-permeable peptide inhibitors of JNK: novel blockers of beta-cell death, Diabetes 50, 77–82.CrossRefPubMedGoogle Scholar
  77. 77.
    Fahraeus, R., Paramio, J. M., Ball, K. L., Lain, S., and Lane, D. P. (1996) Inhibition of pRb phosphorylation and cell-cycle progression by a 20-residue peptide derived from p16CDKN2/INK4A, Curr Biol 6, 84–91.CrossRefPubMedGoogle Scholar
  78. 78.
    Gius, D. R., Ezhevsky, S. A., Becker-Hapak, M., Nagahara, H., Wei, M. C., and Dowdy, S. F. (1999) Transduced p16INK4a peptides inhibit hypophosphorylation of the retinoblastoma protein and cell cycle progression prior to activation of Cdk2 complexes in late G1, Cancer Res 59, 2577–2580.PubMedGoogle Scholar
  79. 79.
    Le Roux, I., Joliot, A. H., Bloch-Gallego, E., Prochiantz, A., and Volovitch, M. (1993) Neurotrophic activity of the Antennapedia homeodomain depends on its specific DNA-binding properties, Proc Natl Acad Sci U S A 90, 9120–9124.CrossRefPubMedGoogle Scholar
  80. 80.
    Bloch-Gallego, E., Le Roux, I., Joliot, A. H., Volovitch, M., Henderson, C. E., and Prochiantz, A. (1993) Antennapedia homeobox peptide enhances growth and branching of embryonic chicken motoneurons in vitro, J Cell Biol 120, 485–492.CrossRefPubMedGoogle Scholar
  81. 81.
    Laakkonen, P., Porkka, K., Hoffman, J. A., and Ruoslahti, E. (2002) A tumor-homing peptide with a targeting specificity related to lymphatic vessels, Nat Med 8, 751–755.PubMedGoogle Scholar
  82. 82.
    Laakkonen, P., Akerman, M. E., Biliran, H., Yang, M., Ferrer, F., Karpanen, T., Hoffman, R. M., and Ruoslahti, E. (2004) Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells, Proc Natl Acad Sci U S A 101, 9381–9386.CrossRefPubMedGoogle Scholar
  83. 83.
    Östlund, P., Kilk, K., Lindgren, M., Hällbrink, M., Jiang, Y., Budihna, M., Cerne, K., Bavec, A., Östenson, C.-G., Zorko, M., and Langel, Ü. (2005) Cell-penetrating mimics of agonist-activated G-protein coupled receptors, Int J Pept Res Ther 11, 237–247.CrossRefGoogle Scholar
  84. 84.
    Issaeva, N., Friedler, A., Bozko, P., Wiman, K. G., Fersht, A. R., and Selivanova, G. (2003) Rescue of mutants of the tumor suppressor p53 in cancer cells by a designed peptide, Proc Natl Acad Sci U S A 100, 13303–13307.CrossRefPubMedGoogle Scholar
  85. 85.
    Esteve, E., Mabrouk, K., Dupuis, A., Smida-Rezgui, S., Altafaj, X., Grunwald, D., Platel, J. C., Andreotti, N., Marty, I., Sabatier, J. M., Ronjat, M., and De Waard, M. (2005) Transduction of the scorpion toxin maurocalcine into cells. Evidence that the toxin crosses the plasma membrane, J Biol Chem 280, 12833–12839.CrossRefPubMedGoogle Scholar
  86. 86.
    Boisseau, S., Mabrouk, K., Ram, N., Garmy, N., Collin, V., Tadmouri, A., Mikati, M., Sabatier, J. M., Ronjat, M., Fantini, J., and De Waard, M. (2006) Cell penetration properties of maurocalcine, a natural venom peptide active on the intracellular ryanodine receptor, Biochim Biophys Acta 1758, 308–319.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Henrik J. Johansson
    • 1
    Email author
  • Samir EL Andaloussi
    • 2
  • Ülo Langel
    • 2
    • 3
  1. 1.Department of Oncology-Pathology, Karolinska Biomics CenterKarolinska InstitutetStockholmSweden
  2. 2.Department of NeurochemistryStockholm UniversityStockholmSweden
  3. 3.Laboratory of Molecular Biotechnology, Institute of TechnologyTartu UniversityTartuEstonia

Personalised recommendations