Advertisement

Toxicity Methods for CPPs

  • Per LundinEmail author
  • Samir EL Andaloussi
  • Ülo Langel
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 683)

Abstract

CPPs have for numerous years been utilized as delivery vectors of various pharmaceutically interesting cargoes, both in vitro and in vivo. As CPPs are gradually approaching the bedsides, investigating toxicity associated with these highly interesting peptides becomes increasingly important and thorough initial assessment of cytotoxicity in vitro is a first step towards advancing these delivery vehicles in to the clinics. The present chapter describes protocols for four cytotoxicity assays in order to provide a toolbox for toxicity assessment of CPPs. The foci lie on membrane integrity (deoxyglucose leakage and propidium iodide assays) and cell viability (the MTT assay), but the chapter also provides a protocol for assessing an important parameter for future clinical applications, namely the hemolytic properties of CPPs.

Key words

CPP Toxicity Membrane integrity Viability Deoxyglucose leakage Propidium iodide MTT Hemolysis 

Notes

Acknowledgments

The work was supported by grants from Swedish Research Council (VR-NT); Center for Biomembrane Research, Stockholm; and Knut and Alice Wallenberg’s Foundation.

References

  1. 1.
    Massodi, I., Bidwell, G. L., Davis, A., Tausend, A., Credit, K., Flessner, M., Raucher, D. (2009) Inhibition of ovarian cancer cell metastasis by a fusion polypeptide Tat-ELP. Clin Exp Metastasis 26, 251–260.CrossRefPubMedGoogle Scholar
  2. 2.
    Wu, B., Moulton, H. M., Iversen, P. L., Jiang, J., Li, J., Li, J., Spurney, C. F., Sali, A., Guerron, A. D., Nagaraju, K., Doran, T., Lu, P., Xiao, X., Lu, Q. L. (2008) Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer. Proc Natl Acad Sci U S A 105, 14814–14819.CrossRefPubMedGoogle Scholar
  3. 3.
    Saar, K., Lindgren, M., Hansen, M., Eiriksdottir, E., Jiang, Y., Rosenthal-Aizman, K., Sassian, M., Langel, Ü. (2005) Cell-penetrating peptides: A comparative membrane toxicity study. Anal Biochem 345, 55–65.CrossRefPubMedGoogle Scholar
  4. 4.
    Mueller, J., Kretzschmar, I., Volkmer, R., Boisguerin, P. (2008) Comparison of cellular uptake using 22 CPPs in 4 different cell lines. Bioconjug Chem 19, 2363–2374.CrossRefPubMedGoogle Scholar
  5. 5.
    Bárány-Wallje, E., Gaur, J., Lundberg, P., Langel, Ü., Gräslund, A. (2007) Differential membrane perturbation caused by the cell-penetrating peptide Tp10 depending on attached cargo. FEBS Lett 581, 2389–2393.CrossRefPubMedGoogle Scholar
  6. 6.
    Magzoub, M., Oglecka, K., Pramanik, A., Eriksson, L. E., Gräslund, A. (2005) Membrane perturbation effects of peptides of peptides derived from the N-termini unprocessed prion protein. Biochim Biophys Acta 15, 126–136.Google Scholar
  7. 7.
    Tréhin, R., Krauss, U., Muff, R., Meinecke, M., Beck-Sickinger, A. G., Merkle, H. P. (2004) Cellular internalization of human ­calcitonin derived peptides in MDCK monolayers: A comparative study with Tat(47-57) and Penetratin(43-58). Pharm Res 21, 33–42.CrossRefPubMedGoogle Scholar
  8. 8.
    Jones, S. W., Christison, R., Bundell, K., Voyce, C. J., Brockbank, S. M. V., Newham, P., Lindsay, M. A. (2005) Characterisation of cell-penetrating peptide-mediated peptide delivery. Br J Pharmacol 145, 1093–1020.CrossRefPubMedGoogle Scholar
  9. 9.
    Deshayes, S., Plenat, T., Charnet, P., Divita, G., Molle, F., Heitz, F., (2006) Formation of transmembrane ionic channels of primary amphipathic cell-penetrating peptides. Consequences on the mechanism of cell penetration. Biochim Biophys Acta 1758, 1846–1851.CrossRefPubMedGoogle Scholar
  10. 10.
    Ziegler, A. (2008) Thermodynamic studies and binding mechanism of cell-penetrating peptides with lipids and glycosaminoglycans. Adv Drug Deliv Rev 60, 580–597.CrossRefPubMedGoogle Scholar
  11. 11.
    Wu, R. P., Youngblood, D. S., Hassinger, J. N., Lovejoy, C. E., Nelson, M. H., Iversen, P. L., Moulton, H. M. (2007) Cell-penetrating peptides as transporters for morpholino oligomers: effects of amino acid substitution on intracellular delivery and cytotoxicity. Nucleic Acids Res 35, 5182–5191.CrossRefPubMedGoogle Scholar
  12. 12.
    Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65, 55–63.CrossRefPubMedGoogle Scholar
  13. 13.
    Walum, E., Peterson, A. (1982) Tritiated 2-deoxy-D-glucose as a probe for cell membrane permeability studies. Anal Biochem 120, 8–11.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Per Lundin
    • 1
    Email author
  • Samir EL Andaloussi
    • 1
  • Ülo Langel
    • 1
    • 2
  1. 1.Department of NeurochemistryStockholm UniversityStockholmSweden
  2. 2.Laboratory of Molecular Biotechnology, Institute of TechnologyTartu UniversityTartuEstonia

Personalised recommendations