Skip to main content

Tagging Recombinant Proteins to Enhance Solubility and Aid Purification

  • Protocol
  • First Online:
Protein Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 681))

Abstract

Protein fusion technology has enormously facilitated the efficient production and purification of individual recombinant proteins. The use of genetically engineered affinity and solubility-enhancing polypeptide “tags” has increased greatly in recent years and there now exists a considerable repertoire of these that can be used to solve issues related to the expression, stability, solubility, folding, and purification of their fusion partner. In the case of large-scale proteomic studies, the development of purification procedures tailored to individual proteins is not practicable, and affinity tags have therefore become indispensable tools for structural and functional proteomic initiatives that involve the expression of many proteins in parallel. Here, the rationale and applications of a range of established and more recently developed solubility-enhancing and affinity tags are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nikaido, H. (1994) Maltose Transport System of Escherichia coli: An ABC-Type Transporter. FEBS Lett. 346, 55–58.

    PubMed  CAS  Google Scholar 

  2. di Guan, C., Li, P., Riggs, P. D., and Inouye, H. (1988) Vectors that Facilitate the Expression and Purification of Foreign Peptides in Escherichia coli by Fusion to Maltose-Binding Protein. Gene. 67, 21–30.

    PubMed  Google Scholar 

  3. Pattenden, L. K., and Thomas, W. G. (2008) Amylose Affinity Chromatography of Maltose-Binding Protein: Purification by both Native and Novel Matrix-Assisted Dialysis Refolding Methods. Methods Mol. Biol. 421, 169–189.

    PubMed  CAS  Google Scholar 

  4. Kapust, R. B., and Waugh, D. S. (1999) Escherichia coli Maltose-Binding Protein is Uncommonly Effective at Promoting the Solubility of Polypeptides to Which it is Fused. Protein Sci. 8, 1668–1674.

    PubMed  CAS  Google Scholar 

  5. Sachdev, D., and Chirgwin, J. M. (2000) Fusions to Maltose-Binding Protein: Control of Folding and Solubility in Protein Purification. Methods Enzymol. 326, 312–321.

    PubMed  CAS  Google Scholar 

  6. Riggs, P. (2000) Expression and Purification of Recombinant Proteins by Fusion to Maltose-Binding Protein. Mol. Biotechnol. 15, 51–63.

    PubMed  CAS  Google Scholar 

  7. Dyson, M. R., Shadbolt, S. P., Vincent, K. J., Perera, R. L., and McCafferty, J. (2004) Production of Soluble Mammalian Proteins in Escherichia coli: Identification of Protein Features that Correlate with Successful Expression. BMC Biotechnol. 4, 32.

    PubMed  Google Scholar 

  8. Baneyx, F., and Mujacic, M. (2004) Recombinant Protein Folding and Misfolding in Escherichia coli. Nat. Biotechnol. 22, 1399–1408.

    PubMed  CAS  Google Scholar 

  9. Kataeva, I., Chang, J., Xu, H., Luan, C. H., Zhou, J., Uversky, V. N., Lin, D., Horanyi, P., Liu, Z. J., Ljungdahl, L. G., Rose, J., Luo, M., and Wang, B. C. (2005) Improving Solubility of Shewanella oneidensis MR-1 and Clostridium thermocellum JW-20 Proteins Expressed into Escherichia coli. J. Proteome Res. 4, 1942–1951.

    PubMed  CAS  Google Scholar 

  10. Busso, D., Delagoutte-Busso, B., and Moras, D. (2005) Construction of a Set Gateway-Based Destination Vectors for High-Throughput Cloning and Expression Screening in Escherichia coli. Anal. Biochem. 343, 313–321.

    PubMed  CAS  Google Scholar 

  11. Braud, S., Moutiez, M., Belin, P., Abello, N., Drevet, P., Zinn-Justin, S., Courcon, M., Masson, C., Dassa, J., Charbonnier, J. B., Boulain, J. C., Menez, A., Genet, R., and Gondry, M. (2005) Dual Expression System Suitable for High-Throughput Fluorescence-Based Screening and Production of Soluble Proteins. J. Proteome Res. 4, 2137–2147.

    PubMed  CAS  Google Scholar 

  12. Nallamsetty, S., and Waugh, D. S. (2006) Solubility-Enhancing Proteins MBP and NusA Play a Passive Role in the Folding of their Fusion Partners. Protein Expr. Purif. 45, 175–182.

    PubMed  CAS  Google Scholar 

  13. Randall, L. L., Hardy, S. J., Topping, T. B., Smith, V. F., Bruce, J. E., and Smith, R. D. (1998) The Interaction Between the Chaperone SecB and its Ligands: Evidence for Multiple Subsites for Binding. Protein Sci. 7, 2384–2390.

    PubMed  CAS  Google Scholar 

  14. Hamilton, S. R., O’Donnell, J. B., Jr, Hammet, A., Stapleton, D., Habinowski, S. A., Means, A. R., Kemp, B. E., and Witters, L. A. (2002) AMP-Activated Protein Kinase Kinase: Detection with Recombinant AMPK alpha1 Subunit. Biochem. Biophys. Res. Commun. 293, 892–898.

    PubMed  CAS  Google Scholar 

  15. Nallamsetty, S., Austin, B. P., Penrose, K. J., and Waugh, D. S. (2005) Gateway Vectors for the Production of Combinatorially-Tagged His6-MBP Fusion Proteins in the Cytoplasm and Periplasm of Escherichia coli. Protein Sci. 14, 2964–2971.

    PubMed  CAS  Google Scholar 

  16. Nallamsetty, S., and Waugh, D. S. (2007) A Generic Protocol for the Expression and Purification of Recombinant Proteins in Escherichia coli using a Combinatorial His6-Maltose Binding Protein Fusion Tag. Nat. Protoc. 2, 383–391.

    PubMed  CAS  Google Scholar 

  17. Routzahn, K. M., and Waugh, D. S. (2002) Differential Effects of Supplementary Affinity Tags on the Solubility of MBP Fusion Proteins. J. Struct. Funct. Genomics. 2, 83–92.

    PubMed  CAS  Google Scholar 

  18. Smith, D. B., and Johnson, K. S. (1988) Single-Step Purification of Polypeptides Expressed in Escherichia coli as Fusions with Glutathione S-Transferase. Gene. 67, 31–40.

    PubMed  CAS  Google Scholar 

  19. Hunt, I. (2005) From Gene to Protein: A Review of New and Enabling Technologies for Multi-Parallel Protein Expression. Protein Expr. Purif. 40, 1–22.

    PubMed  CAS  Google Scholar 

  20. Kaplan, W., Husler, P., Klump, H., Erhardt, J., Sluis-Cremer, N., and Dirr, H. (1997) Conformational Stability of pGEX-Expressed Schistosoma japonicum Glutathione S-Transferase: A Detoxification Enzyme and Fusion-Protein Affinity Tag. Protein Sci. 6, 399–406.

    PubMed  CAS  Google Scholar 

  21. Frangioni, J. V., and Neel, B. G. (1993) Use of a General Purpose Mammalian Expression Vector for Studying Intracellular Protein Targeting: Identification of Critical Residues in the Nuclear Lamin A/C Nuclear Localization Signal. J. Cell Sci. 105 (Pt 2), 481–488.

    PubMed  CAS  Google Scholar 

  22. Vikis, H. G., and Guan, K. L. (2004) Glutathione-S-Transferase-Fusion Based Assays for Studying Protein–Protein Interactions. Methods Mol. Biol. 261, 175–186.

    PubMed  CAS  Google Scholar 

  23. Singh, C. R., and Asano, K. (2007) Localization and Characterization of Protein–Protein Interaction Sites. Methods Enzymol. 429, 139–161.

    PubMed  CAS  Google Scholar 

  24. Jung, J. W., Jung, S. H., Kim, H. S., Yuk, J. S., Park, J. B., Kim, Y. M., Han, J. A., Kim, P. H., and Ha, K. S. (2006) High-Throughput Analysis of GST-Fusion Protein Expression and Activity-Dependent Protein Interactions on GST-Fusion Protein Arrays with a Spectral Surface Plasmon Resonance Biosensor. Proteomics. 6, 1110–1120.

    PubMed  CAS  Google Scholar 

  25. Saaem, I., Papasotiropoulos, V., Wang, T., Soteropoulos, P., and Libera, M. (2007) Hydrogel-Based Protein Nanoarrays. J. Nanosci. Nanotechnol. 7, 2623–2632.

    PubMed  CAS  Google Scholar 

  26. Zhan, Y., Song, X., and Zhou, G. W. (2001) Structural Analysis of Regulatory Protein Domains using GST-Fusion Proteins. Gene. 281, 1–9.

    PubMed  CAS  Google Scholar 

  27. Smyth, D. R., Mrozkiewicz, M. K., McGrath, W. J., Listwan, P., and Kobe, B. (2003) Crystal Structures of Fusion Proteins with Large-Affinity Tags. Protein Sci. 12, 1313–1322.

    PubMed  CAS  Google Scholar 

  28. Zheng, G., and Yang, Y. C. (2004) ZNF76, a Novel Transcriptional Repressor Targeting TATA-Binding Protein, is Modulated by Sumoylation. J. Biol. Chem. 279, 42410–42421.

    PubMed  CAS  Google Scholar 

  29. Gill, G. (2005) Something About SUMO Inhibits Transcription. Curr. Opin. Genet. Dev. 15, 536–541.

    PubMed  CAS  Google Scholar 

  30. Kawabe, Y., Seki, M., Seki, T., Wang, W. S., Imamura, O., Furuichi, Y., Saitoh, H., and Enomoto, T. (2000) Covalent Modification of the Werner’s Syndrome Gene Product with the Ubiquitin-Related Protein, SUMO-1. J. Biol. Chem. 275, 20963–20966.

    PubMed  CAS  Google Scholar 

  31. Muller, S., Matunis, M. J., and Dejean, A. (1998) Conjugation with the Ubiquitin-Related Modifier SUMO-1 Regulates the Partitioning of PML within the Nucleus. EMBO J. 17, 61–70.

    PubMed  CAS  Google Scholar 

  32. Melchior, F. (2000) SUMO – Nonclassical Ubiquitin. Annu. Rev. Cell Dev. Biol. 16, 591–626.

    PubMed  CAS  Google Scholar 

  33. Bayer, P., Arndt, A., Metzger, S., Mahajan, R., Melchior, F., Jaenicke, R., and Becker, J. (1998) Structure Determination of the Small Ubiquitin-Related Modifier SUMO-1. J. Mol. Biol. 280, 275–286.

    PubMed  CAS  Google Scholar 

  34. Johnson, E. S. (2004) Protein Modification by SUMO. Annu. Rev. Biochem. 73, 355–382.

    PubMed  CAS  Google Scholar 

  35. Johnson, E. S., and Blobel, G. (1999) Cell Cycle-Regulated Attachment of the Ubiquitin-Related Protein SUMO to the Yeast Septins. J. Cell Biol. 147, 981–994.

    PubMed  CAS  Google Scholar 

  36. Tatham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J. M., Botting, C. H., Naismith, J. H., and Hay, R. T. (2001) Polymeric Chains of SUMO-2 and SUMO-3 are Conjugated to Protein Substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276, 35368–35374.

    PubMed  CAS  Google Scholar 

  37. Mossessova, E., and Lima, C. D. (2000) Ulp1-SUMO Crystal Structure and Genetic Analysis Reveal Conserved Interactions and a Regulatory Element Essential for Cell Growth in Yeast. Mol. Cell. 5, 865–876.

    PubMed  CAS  Google Scholar 

  38. Catanzariti, A. M., Soboleva, T. A., Jans, D. A., Board, P. G., and Baker, R. T. (2004) An Efficient System for High-Level Expression and Easy Purification of Authentic Recombinant Proteins. Protein Sci. 13, 1331–1339.

    PubMed  CAS  Google Scholar 

  39. Malakhov, M. P., Mattern, M. R., Malakhova, O. A., Drinker, M., Weeks, S. D., and Butt, T. R. (2004) SUMO Fusions and SUMO-Specific Protease for Efficient Expression and Purification of Proteins. J. Struct. Funct. Genomics. 5, 75–86.

    PubMed  CAS  Google Scholar 

  40. Marblestone, J. G., Edavettal, S. C., Lim, Y., Lim, P., Zuo, X., and Butt, T. R. (2006) Comparison of SUMO Fusion Technology with Traditional Gene Fusion Systems: Enhanced Expression and Solubility with SUMO. Protein Sci. 15, 182–189.

    PubMed  CAS  Google Scholar 

  41. Zuo, X., Li, S., Hall, J., Mattern, M. R., Tran, H., Shoo, J., Tan, R., Weiss, S. R., and Butt, T. R. (2005) Enhanced Expression and Purification of Membrane Proteins by SUMO Fusion in Escherichia coli. J. Struct. Funct. Genomics. 6, 103–111.

    PubMed  CAS  Google Scholar 

  42. Butt, T. R., Edavettal, S. C., Hall, J. P., and Mattern, M. R. (2005) SUMO Fusion Technology for Difficult-to-Express Proteins. Protein Expr. Purif. 43, 1–9.

    PubMed  CAS  Google Scholar 

  43. Zuo, X., Mattern, M. R., Tan, R., Li, S., Hall, J., Sterner, D. E., Shoo, J., Tran, H., Lim, P., Sarafianos, S. G., Kazi, L., Navas-Martin, S., Weiss, S. R., and Butt, T. R. (2005) Expression and Purification of SARS Coronavirus Proteins using SUMO-Fusions. Protein Expr. Purif. 42, 100–110.

    PubMed  CAS  Google Scholar 

  44. Lee, J., and Kim, S. H. (2009) High-Throughput T7 LIC Vector for Introducing C-Terminal Poly-Histidine Tags with Variable Lengths without Extra Sequences. Protein Expr. Purif. 63, 58–61.

    PubMed  CAS  Google Scholar 

  45. Catic, A., Misaghi, S., Korbel, G. A., and Ploegh, H. L. (2007) ElaD, a Deubiquitinating Protease Expressed by E. Coli. PLoS One. 2, e381.

    PubMed  Google Scholar 

  46. Liu, L., Spurrier, J., Butt, T. R., and Strickler, J. E. (2008) Enhanced Protein Expression in the baculovirus/insect Cell System using Engineered SUMO Fusions. Protein Expr. Purif. 62, 21–28.

    PubMed  CAS  Google Scholar 

  47. Peroutka, R. J., Elshourbagy, N., Piech, T., and Butt, T. R. (2008) Enhanced Protein Expression in Mammalian Cells using Engineered SUMO Fusions: Secreted Phospholipase A2. Protein Sci. 17, 1586–1595.

    PubMed  CAS  Google Scholar 

  48. Panavas, T., Sanders, C., and Butt, T. R. (2009) SUMO Fusion Technology for Enhanced Protein Production in Prokaryotic and Eukaryotic Expression Systems. Methods Mol. Biol. 497, 303–317.

    PubMed  CAS  Google Scholar 

  49. Katti, S. K., LeMaster, D. M., and Eklund, H. (1990) Crystal Structure of Thioredoxin from Escherichia coli at 1.68 A Resolution. J. Mol. Biol. 212, 167–184.

    PubMed  CAS  Google Scholar 

  50. LaVallie, E. R., DiBlasio, E. A., Kovacic, S., Grant, K. L., Schendel, P. F., and McCoy, J. M. (1993) A Thioredoxin Gene Fusion Expression System that Circumvents Inclusion Body Formation in the E. Coli Cytoplasm. Biotechnology (N. Y). 11, 187–193.

    CAS  Google Scholar 

  51. Smith, P. A., Tripp, B. C., DiBlasio-Smith, E. A., Lu, Z., LaVallie, E. R., and McCoy, J. M. (1998) A Plasmid Expression System for Quantitative In Vivo Biotinylation of Thioredoxin Fusion Proteins in Escherichia coli. Nucleic Acids Res. 26, 1414–1420.

    PubMed  CAS  Google Scholar 

  52. LaVallie, E. R., Lu, Z., Diblasio-Smith, E. A., Collins-Racie, L. A., and McCoy, J. M. (2000) Thioredoxin as a Fusion Partner for Production of Soluble Recombinant Proteins in Escherichia coli. Methods Enzymol. 326, 322–340.

    PubMed  CAS  Google Scholar 

  53. Dummler, A., Lawrence, A. M., and de Marco, A. (2005) Simplified Screening for the Detection of Soluble Fusion Constructs Expressed in E. Coli using a Modular Set of Vectors. Microb. Cell Fact. 4, 34.

    PubMed  Google Scholar 

  54. Hammarstrom, M., Hellgren, N., van Den Berg, S., Berglund, H., and Hard, T. (2002) Rapid Screening for Improved Solubility of Small Human Proteins Produced as Fusion Proteins in Escherichia coli. Protein Sci. 11, 313–321.

    PubMed  CAS  Google Scholar 

  55. Kim, S., and Lee, S. B. (2008) Soluble Expression of Archaeal Proteins in Escherichia coli by using Fusion-Partners. Protein Expr. Purif. 62, 116–119.

    PubMed  CAS  Google Scholar 

  56. Bogomolovas, J., Simon, B., Sattler, M., and Stier, G. (2009) Screening of Fusion Partners for High Yield Expression and Purification of Bioactive Viscotoxins. Protein Expr. Purif. 64, 16–23.

    PubMed  CAS  Google Scholar 

  57. Derewenda, Z. S. (2004) The use of Recombinant Methods and Molecular Engineering in Protein Crystallization. Methods. 34, 354–363.

    PubMed  CAS  Google Scholar 

  58. Corsini, L., Hothorn, M., Scheffzek, K., Sattler, M., and Stier, G. (2008) Thioredoxin as a Fusion Tag for Carrier-Driven Crystallization. Protein Sci. 17, 2070–2079.

    PubMed  CAS  Google Scholar 

  59. Gusarov, I., and Nudler, E. (2001) Control of Intrinsic Transcription Termination by N and NusA: The Basic Mechanisms. Cell. 107, 437–449.

    PubMed  CAS  Google Scholar 

  60. Davis, G. D., Elisee, C., Newham, D. M., and Harrison, R. G. (1999) New Fusion Protein Systems Designed to Give Soluble Expression in Escherichia coli. Biotechnol. Bioeng. 65, 382–388.

    PubMed  CAS  Google Scholar 

  61. Harrison, R. G. (2000) Expression of Soluble Heterologous Proteins via Fusion with NusA Protein. inNovation. 11, 4–7.

    Google Scholar 

  62. Cabrita, L. D., Dai, W., and Bottomley, S. P. (2006) A Family of E. Coli Expression Vectors for Laboratory Scale and High Throughput Soluble Protein Production. BMC Biotechnol. 6, 12.

    PubMed  Google Scholar 

  63. Graslund, S., Eklund, M., Falk, R., Uhlen, M., Nygren, P. A., and Stahl, S. (2002) A Novel Affinity Gene Fusion System Allowing Protein A-Based Recovery of Non-Immunoglobulin Gene Products. J. Biotechnol. 99, 41–50.

    PubMed  Google Scholar 

  64. Zhao, Y., Benita, Y., Lok, M., Kuipers, B., van der Ley, P., Jiskoot, W., Hennink, W. E., Crommelin, D. J., and Oosting, R. S. (2005) Multi-Antigen Immunization using IgG Binding Domain ZZ as Carrier. Vaccine. 23, 5082–5090.

    PubMed  CAS  Google Scholar 

  65. Cheng, Y., and Patel, D. J. (2004) An Efficient System for Small Protein Expression and Refolding. Biochem. Biophys. Res. Commun. 317, 401–405.

    PubMed  CAS  Google Scholar 

  66. Card, P. B., and Gardner, K. H. (2005) Identification and Optimization of Protein Domains for NMR Studies. Methods Enzymol. 394, 3–16.

    PubMed  CAS  Google Scholar 

  67. Bao, W. J., Gao, Y. G., Chang, Y. G., Zhang, T. Y., Lin, X. J., Yan, X. Z., and Hu, H. Y. (2006) Highly Efficient Expression and Purification System of Small-Size Protein Domains in Escherichia coli for Biochemical Characterization. Protein Expr. Purif. 47, 599–606.

    PubMed  CAS  Google Scholar 

  68. Zhang, Z., Li, Z. H., Wang, F., Fang, M., Yin, C. C., Zhou, Z. Y., Lin, Q., and Huang, H. L. (2002) Overexpression of DsbC and DsbG Markedly Improves Soluble and Functional Expression of Single-Chain Fv Antibodies in Escherichia coli. Protein Expr. Purif. 26, 218–228.

    PubMed  CAS  Google Scholar 

  69. Chatterjee, D. K., and Esposito, D. (2006) Enhanced Soluble Protein Expression using Two New Fusion Tags. Protein Expr. Purif. 46, 122–129.

    PubMed  CAS  Google Scholar 

  70. Zhang, Y. B., Howitt, J., McCorkle, S., Lawrence, P., Springer, K., and Freimuth, P. (2004) Protein Aggregation during Overexpression Limited by Peptide Extensions with Large Net Negative Charge. Protein Expr. Purif. 36, 207–216.

    PubMed  CAS  Google Scholar 

  71. Porath, J., Carlsson, J., Olsson, I., and Belfrage, G. (1975) Metal Chelate Affinity Chromatography, a New Approach to Protein Fractionation. Nature. 258, 598–599.

    PubMed  CAS  Google Scholar 

  72. Storcksdieck genannt Bonsmann, S., and Hurrell, R. F. (2007) Iron-Binding Properties, Amino Acid Composition, and Structure of Muscle Tissue Peptides from In Vitro Digestion of Different Meat Sources. J. Food Sci. 72, S019–S029.

    PubMed  CAS  Google Scholar 

  73. Swain, J. H., Tabatabai, L. B., and Reddy, M. B. (2002) Histidine Content of Low-Molecular-Weight Beef Proteins Influences Nonheme Iron Bioavailability in Caco-2 Cells. J. Nutr. 132, 245–251.

    PubMed  CAS  Google Scholar 

  74. Taylor, P. G., Martinez-Torres, C., Romano, E. L., and Layrisse, M. (1986) The Effect of Cysteine-Containing Peptides Released during Meat Digestion on Iron Absorption in Humans. Am. J. Clin. Nutr. 43, 68–71.

    PubMed  CAS  Google Scholar 

  75. Porath, J. (1992) Immobilized Metal Ion Affinity Chromatography. Protein Expr. Purif. 3, 263–281.

    PubMed  CAS  Google Scholar 

  76. Ueda, E. K., Gout, P. W., and Morganti, L. (2003) Current and Prospective Applications of Metal Ion-Protein Binding. J. Chromatogr. A. 988, 1–23.

    PubMed  CAS  Google Scholar 

  77. Chaga, G. S. (2001) Twenty-Five Years of Immobilized Metal Ion Affinity Chromatography: Past, Present and Future. J. Biochem. Biophys. Methods. 49, 313–334.

    PubMed  CAS  Google Scholar 

  78. Li, M., Su, Z. G., and Janson, J. C. (2004) In Vitro Protein Refolding by Chromatographic Procedures. Protein Expr. Purif. 33, 1–10.

    PubMed  Google Scholar 

  79. Hutchinson, M. H., and Chase, H. A. (2006) Adsorptive Refolding of Histidine-Tagged Glutathione S-Transferase using Metal Affinity Chromatography. J. Chromatogr. A. 1128, 125–132.

    PubMed  CAS  Google Scholar 

  80. Rogl, H., Kosemund, K., Kuhlbrandt, W., and Collinson, I. (1998) Refolding of Escherichia coli Produced Membrane Protein Inclusion Bodies Immobilised by Nickel Chelating Chromatography. FEBS Lett. 432, 21–26.

    PubMed  CAS  Google Scholar 

  81. Zouhar, J., Nanak, E., and Brzobohaty, B. (1999) Expression, Single-Step Purification, and Matrix-Assisted Refolding of a Maize Cytokinin Glucoside-Specific Beta-Glucosidase. Protein Expr. Purif. 17, 153–162.

    PubMed  CAS  Google Scholar 

  82. Dong, X. Y., Chen, L. J., and Sun, Y. (2009) Refolding and Purification of Histidine-Tagged Protein by Artificial Chaperone-Assisted Metal Affinity Chromatography. J. Chromatogr. A. 1216, 5207–5213.

    PubMed  CAS  Google Scholar 

  83. Manjasetty, B. A., Turnbull, A. P., Panjikar, S., Bussow, K., and Chance, M. R. (2008) Automated Technologies and Novel Techniques to Accelerate Protein Crystallography for Structural Genomics. Proteomics. 8, 612–625.

    PubMed  CAS  Google Scholar 

  84. Sharma, S. K., Evans, D. B., Vosters, A. F., McQuade, T. J., and Tarpley, W. G. (1991) Metal Affinity Chromatography of Recombinant HIV-1 Reverse Transcriptase Containing a Human Renin Cleavable Metal Binding Domain. Biotechnol. Appl. Biochem. 14, 69–81.

    PubMed  CAS  Google Scholar 

  85. Zhang, Z., Tong, K. T., Belew, M., Pettersson, T., and Janson, J. C. (1992) Production, Purification and Characterization of Recombinant Human Interferon Gamma. J. Chromatogr. 604, 143–155.

    PubMed  CAS  Google Scholar 

  86. Franke, C. A., and Hruby, D. E. (1993) Expression and Single-Step Purification of Enzymatically Active Vaccinia Virus Thymidine Kinase Containing an Engineered Oligohistidine Domain by Immobilized Metal Affinity Chromatography. Protein Expr. Purif. 4, 101–109.

    PubMed  CAS  Google Scholar 

  87. Kipriyanov, S. M., Dubel, S., Breitling, F., Kontermann, R. E., Heymann, S., and Little, M. (1995) Bacterial Expression and Refolding of Single-Chain Fv Fragments with C-Terminal Cysteines. Cell Biophys. 26, 187–204.

    PubMed  CAS  Google Scholar 

  88. Vaughan, T. J., Williams, A. J., Pritchard, K., Osbourn, J. K., Pope, A. R., Earnshaw, J. C., McCafferty, J., Hodits, R. A., Wilton, J., and Johnson, K. S. (1996) Human Antibodies with Sub-Nanomolar Affinities Isolated from a Large Non-Immunized Phage Display Library. Nat. Biotechnol. 14, 309–314.

    PubMed  CAS  Google Scholar 

  89. Eldin, P., Pauza, M. E., Hieda, Y., Lin, G., Murtaugh, M. P., Pentel, P. R., and Pennell, C. A. (1997) High-Level Secretion of Two Antibody Single Chain Fv Fragments by Pichia pastoris. J. Immunol. Methods. 201, 67–75.

    PubMed  CAS  Google Scholar 

  90. Passafiume, M., Vulliez-le Normand, B., Riottot, M. M., and Bentley, G. A. (1998) Sequence Analysis of a Monoclonal Antibody Specific for the preS2 Region of Hepatitis B Surface Antigen, and the Cloning, Expression and Characterisation of its Single-Chain Fv Construction. FEBS Lett. 441, 407–412.

    PubMed  CAS  Google Scholar 

  91. Kimple, M. E., and Sondek, J. (2004) Overview of Affinity Tags for Protein Purification. Curr. Protoc. Protein Sci. Chapter 9, Unit 9.9.

    Google Scholar 

  92. Kwon, K., Grose, C., Pieper, R., Pandya, G. A., Fleischmann, R. D., and Peterson, S. N. (2009) High Quality Protein Microarray Using In Situ Protein Purification. BMC Biotechnol. 9, 72.

    PubMed  Google Scholar 

  93. Steen, J., Uhlen, M., Hober, S., and Ottosson, J. (2006) High-Throughput Protein Purification using an Automated Set-Up for High-Yield Affinity Chromatography. Protein Expr. Purif. 46, 173–178.

    PubMed  CAS  Google Scholar 

  94. Hang, Q., Woods, L., Feiss, M., and Catalano, C. E. (1999) Cloning, Expression, and Biochemical Characterization of Hexahistidine-Tagged Terminase Proteins. J. Biol. Chem. 274, 15305–15314.

    PubMed  CAS  Google Scholar 

  95. Gaberc-Porekar, V., Menart, V., Jevsevar, S., Vidensek, A., and Stalc, A. (1999) Histidines in Affinity Tags and Surface Clusters for Immobilized Metal-Ion Affinity Chromato-graphy of Trimeric Tumor Necrosis Factor Alpha. J. Chromatogr. A. 852, 117–128.

    PubMed  CAS  Google Scholar 

  96. Chant, A., Kraemer-Pecore, C. M., Watkin, R., and Kneale, G. G. (2005) Attachment of a Histidine Tag to the Minimal Zinc Finger Protein of the Aspergillus Nidulans Gene Regulatory Protein AreA Causes a Conformational Change at the DNA-Binding Site. Protein Expr. Purif. 39, 152–159.

    PubMed  CAS  Google Scholar 

  97. Chaga, G., Bochkariov, D. E., Jokhadze, G. G., Hopp, J., and Nelson, P. (1999) Natural Poly-Histidine Affinity Tag for Purification of Recombinant Proteins on Cobalt(II)–Carboxymethylaspartate Crosslinked Agarose. J. Chromatogr. A. 864, 247–256.

    PubMed  CAS  Google Scholar 

  98. de Vries, E. G., de Hooge, M. N., Gietema, J. A., and de Jong, S., Correspondence Re, Ferreira, C. G., et al. Apoptosis: Target of Cancer Therapy. Clin. Cancer Res. 8, 2024–2034, 2002. Clin. Cancer Res. 9, 912; author reply 913.

    Google Scholar 

  99. Xu, C. G., Fan, X. J., Fu, Y. J., and Liang, A. H. (2008) Effect of Location of the His-Tag on the Production of Soluble and Functional Buthus Martensii Karsch Insect Toxin. Protein Expr. Purif. 59, 103–109.

    PubMed  CAS  Google Scholar 

  100. Loughran, S. T., Loughran, N. B., Ryan, B. J., D’Souza, B. N., and Walls, D. (2006) Modified His-Tag Fusion Vector for Enhanced Protein Purification by Immobilized Metal Affinity Chromatography. Anal. Biochem. 355, 148–150.

    PubMed  CAS  Google Scholar 

  101. Grisshammer, R., White, J. F., Trinh, L. B., and Shiloach, J. (2005) Large-Scale Expression and Purification of a G-Protein-Coupled Receptor for Structure Determination – an Overview. J. Struct. Funct. Genomics. 6, 159–163.

    PubMed  CAS  Google Scholar 

  102. Yeliseev, A. A., Wong, K. K., Soubias, O., and Gawrisch, K. (2005) Expression of Human Peripheral Cannabinoid Receptor for Structural Studies. Protein Sci. 14, 2638–2653.

    PubMed  CAS  Google Scholar 

  103. Magnusdottir, A., Johansson, I., Dahlgren, L. G., Nordlund, P., and Berglund, H. (2009) Enabling IMAC Purification of Low Abundance Recombinant Proteins from E. Coli Lysates. Nat. Methods. 6, 477–478.

    PubMed  CAS  Google Scholar 

  104. Liu, Z., Bartlow, P., Varakala, R., Beitle, R., Koepsel, R., and Ataai, M. M. (2009) Use of Proteomics for Design of a Tailored Host Cell for Highly Efficient Protein Purification. J. Chromatogr. A. 1216, 2433–2438.

    PubMed  CAS  Google Scholar 

  105. Zhao, Q., Chan, Y. W., Lee, S. S., and Cheung, W. T. (2009) One-Step Expression and Purification of Single-Chain Variable Antibody Fragment using an Improved Hexahistidine Tag Phagemid Vector. Protein Expr. Purif. 68, 190–195.

    PubMed  CAS  Google Scholar 

  106. Ye, K., Jin, S., Ataai, M. M., Schultz, J. S., and Ibeh, J. (2004) Tagging Retrovirus Vectors with a Metal Binding Peptide and One-Step Purification by Immobilized Metal Affinity Chromatography. J. Virol. 78, 9820–9827.

    PubMed  CAS  Google Scholar 

  107. Cheeks, M. C., Kamal, N., Sorrell, A., Darling, D., Farzaneh, F., and Slater, N. K. (2009) Immobilized Metal Affinity Chromatography of Histidine-Tagged Lentiviral Vectors using Monolithic Adsorbents. J. Chromatogr. A. 1216, 2705–2711.

    PubMed  CAS  Google Scholar 

  108. Schmidt, T. G., and Skerra, A. (2007) The Strep-Tag System for One-Step Purification and High-Affinity Detection or Capturing of Proteins. Nat. Protoc. 2, 1528–1535.

    PubMed  CAS  Google Scholar 

  109. Keefe, A. D., Wilson, D. S., Seelig, B., and Szostak, J. W. (2001) One-Step Purification of Recombinant Proteins using a Nanomolar-Affinity Streptavidin-Binding Peptide, the SBP-Tag. Protein Expr. Purif. 23, 440–446.

    PubMed  CAS  Google Scholar 

  110. Fuchs, S. M., and Raines, R. T. (2005) Polyarginine as a Multifunctional Fusion Tag. Protein Sci. 14, 1538–1544.

    PubMed  CAS  Google Scholar 

  111. Stofko-Hahn, R. E., Carr, D. W., and Scott, J. D. (1992) A Single Step Purification for Recombinant Proteins. Characterization of a Microtubule Associated Protein (MAP 2) Fragment which Associates with the Type II cAMP-Dependent Protein Kinase. FEBS Lett. 302, 274–278.

    PubMed  CAS  Google Scholar 

  112. Carrard, G., Koivula, A., Soderlund, H., and Beguin, P. (2000) Cellulose-Binding Domains Promote Hydrolysis of Different Sites on Crystalline Cellulose. Proc. Natl. Acad. Sci. U.S.A. 97, 10342–10347.

    PubMed  CAS  Google Scholar 

  113. Shoseyov, O., Shani, Z., and Levy, I. (2006) Carbohydrate Binding Modules: Biochemical Properties and Novel Applications. Microbiol. Mol. Biol. Rev. 70, 283–295.

    PubMed  CAS  Google Scholar 

  114. Nahalka, J., and Nidetzky, B. (2007) Fusion to a Pull-Down Domain: A Novel Approach of Producing Trigonopsis variabilisD-Amino Acid Oxidase as Insoluble Enzyme Aggregates. Biotechnol. Bioeng. 97, 454–461.

    PubMed  CAS  Google Scholar 

  115. Xu, Y., and Foong, F. C. (2008) Characterization of a Cellulose Binding Domain from Clostridium Cellulovorans Endoglucanase–Xylanase D and its use as a Fusion Partner for Soluble Protein Expression in Escherichia coli. J. Biotechnol. 135, 319–325.

    PubMed  CAS  Google Scholar 

  116. Craig, S. J., Shu, A., Xu, Y., Foong, F. C., and Nordon, R. (2007) Chimeric Protein for Selective Cell Attachment onto Cellulosic Substrates. Protein Eng. Des. Sel. 20, 235–241.

    PubMed  CAS  Google Scholar 

  117. Evans, T. C., Jr, and Xu, M. Q. (1999) Intein-Mediated Protein Ligation: Harnessing Nature’s Escape Artists. Biopolymers. 51, 333–342.

    PubMed  CAS  Google Scholar 

  118. Xu, M. Q., Paulus, H., and Chong, S. (2000) Fusions to Self-Splicing Inteins for Protein Purification. Methods Enzymol. 326, 376–418.

    PubMed  CAS  Google Scholar 

  119. Einhauer, A., and Jungbauer, A. (2001) The FLAG Peptide, a Versatile Fusion Tag for the Purification of Recombinant Proteins. J. Biochem. Biophys. Methods. 49, 455–465.

    PubMed  CAS  Google Scholar 

  120. Hage, D. S. (1999) Affinity Chromatography: A Review of Clinical Applications. Clin. Chem. 45, 593–615.

    PubMed  CAS  Google Scholar 

  121. Munro, S., and Pelham, H. R. (1986) An Hsp70-Like Protein in the ER: Identity with the 78 kD Glucose-Regulated Protein and Immunoglobulin Heavy Chain Binding Protein. Cell. 46, 291–300.

    PubMed  CAS  Google Scholar 

  122. Thompson, N. E., Arthur, T. M., and Burgess, R. R. (2003) Development of an Epitope Tag for the Gentle Purification of Proteins by Immunoaffinity Chromatography: Application to Epitope-Tagged Green Fluorescent Protein. Anal. Biochem. 323, 171–179.

    PubMed  CAS  Google Scholar 

  123. Kim, J. S., and Raines, R. T. (1993) Ribonuclease S-Peptide as a Carrier in Fusion Proteins. Protein Sci. 2, 348–356.

    PubMed  CAS  Google Scholar 

  124. Banki, M. R., Feng, L., and Wood, D. W. (2005) Simple Bioseparations using Self-Cleaving Elastin-Like Polypeptide Tags. Nat. Methods. 2, 659–661.

    PubMed  CAS  Google Scholar 

  125. Meyer, D. E., and Chilkoti, A. (1999) Purification of Recombinant Proteins by Fusion with Thermally-Responsive Polypeptides. Nat. Biotechnol. 17, 1112–1115.

    PubMed  CAS  Google Scholar 

  126. Lim, D. W., Trabbic-Carlson, K., Mackay, J. A., and Chilkoti, A. (2007) Improved Non-Chromatographic Purification of a Recombinant Protein by Cationic Elastin-Like Polypeptides. Biomacromolecules. 8, 1417–1424.

    PubMed  CAS  Google Scholar 

  127. Wu, W. Y., Mee, C., Califano, F., Banki, R., and Wood, D. W. (2006) Recombinant Protein Purification by Self-Cleaving Aggregation Tag. Nat. Protoc. 1, 2257–2262.

    PubMed  CAS  Google Scholar 

  128. Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. (1999) A Generic Protein Purification Method for Protein Complex Characterization and Proteome Exploration. Nat. Biotechnol. 17, 1030–1032.

    PubMed  CAS  Google Scholar 

  129. Puig, O., Caspary, F., Rigaut, G., Rutz, B., Bouveret, E., Bragado-Nilsson, E., Wilm, M., and Seraphin, B. (2001) The Tandem Affinity Purification (TAP) Method: A General Procedure of Protein Complex Purification. Methods. 24, 218–229.

    PubMed  CAS  Google Scholar 

  130. Gavin, A. C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J. M., Michon, A. M., Cruciat, C. M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M. A., Copley, R. R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., and Superti-Furga, G. (2002) Functional Organization of the Yeast Proteome by Systematic Analysis of Protein Complexes. Nature. 415, 141–147.

    PubMed  CAS  Google Scholar 

  131. Forler, D., Kocher, T., Rode, M., Gentzel, M., Izaurralde, E., and Wilm, M. (2003) An Efficient Protein Complex Purification Method for Functional Proteomics in Higher Eukaryotes. Nat. Biotechnol. 21, 89–92.

    PubMed  CAS  Google Scholar 

  132. Gingras, A. C., Aebersold, R., and Raught, B. (2005) Advances in Protein Complex Analysis Using Mass Spectrometry. J. Physiol. 563, 11–21.

    PubMed  CAS  Google Scholar 

  133. Rohila, J. S., Chen, M., Chen, S., Chen, J., Cerny, R., Dardick, C., Canlas, P., Xu, X., Gribskov, M., Kanrar, S., Zhu, J. K., Ronald, P., and Fromm, M. E. (2006) Protein–Protein Interactions of Tandem Affinity Purification-Tagged Protein Kinases in Rice. Plant J. 46, 1–13.

    PubMed  CAS  Google Scholar 

  134. Rubio, V., Shen, Y., Saijo, Y., Liu, Y., Gusmaroli, G., Dinesh-Kumar, S. P., and Deng, X. W. (2005) An Alternative Tandem Affinity Purification Strategy Applied to Arabidopsis Protein Complex Isolation. Plant J. 41, 767–778.

    PubMed  CAS  Google Scholar 

  135. Van Leene, J., Stals, H., Eeckhout, D., Persiau, G., Van De Slijke, E., Van Isterdael, G., De Clercq, A., Bonnet, E., Laukens, K., Remmerie, N., Henderickx, K., De Vijlder, T., Abdelkrim, A., Pharazyn, A., Van Onckelen, H., Inze, D., Witters, E., and De Jaeger, G. (2007) A Tandem Affinity Purification-Based Technology Platform to Study the Cell Cycle Interactome in Arabidopsis thaliana. Mol. Cell. Proteomics. 6, 1226–1238.

    PubMed  Google Scholar 

  136. Lehmann, R., Meyer, J., Schuemann, M., Krause, E., and Freund, C. (2009) A Novel S3S-TAP-Tag for the Isolation of T Cell Interaction Partners of Adhesion and Degranulation Promoting Adaptor Protein (ADAP). Proteomics. 9, 5288–5295.

    PubMed  CAS  Google Scholar 

  137. Gloeckner, C. J., Boldt, K., Schumacher, A., and Ueffing, M. (2009) Tandem Affinity Purification of Protein Complexes from Mammalian Cells by the Strep/FLAG (SF)-TAP Tag. Methods Mol. Biol. 564, 359–372.

    PubMed  CAS  Google Scholar 

  138. Tsai, A., and Carstens, R. P. (2006) An Optimized Protocol for Protein Purification in Cultured Mammalian Cells using a Tandem Affinity Purification Approach. Nat. Protoc. 1, 2820–2827.

    PubMed  CAS  Google Scholar 

  139. Van Leene, J., Witters, E., Inze, D., and De Jaeger, G. (2008) Boosting Tandem Affinity Purification of Plant Protein Complexes. Trends Plant Sci. 13, 517–520.

    PubMed  Google Scholar 

  140. Burckstummer, T., Bennett, K. L., Preradovic, A., Schutze, G., Hantschel, O., Superti-Furga, G., and Bauch, A. (2006) An Efficient Tandem Affinity Purification Procedure for Interaction Proteomics in Mammalian Cells. Nat. Methods. 3, 1013–1019.

    PubMed  Google Scholar 

  141. Schimanski, B., Nguyen, T. N., and Gunzl, A. (2005) Highly Efficient Tandem Affinity Purification of Trypanosome Protein Complexes Based on a Novel Epitope Combination. Eukaryot. Cell. 4, 1942–1950.

    PubMed  CAS  Google Scholar 

  142. Collins, S. R., Miller, K. M., Maas, N. L., Roguev, A., Fillingham, J., Chu, C. S., Schuldiner, M., Gebbia, M., Recht, J., Shales, M., Ding, H., Xu, H., Han, J., Ingvarsdottir, K., Cheng, B., Andrews, B., Boone, C., Berger, S. L., Hieter, P., Zhang, Z., Brown, G. W., Ingles, C. J., Emili, A., Allis, C. D., Toczyski, D. P., Weissman, J. S., Greenblatt, J. F., and Krogan, N. J. (2007) Functional Dissection of Protein Complexes Involved in Yeast Chromosome Biology using a Genetic Interaction Map. Nature. 446, 806–810.

    PubMed  CAS  Google Scholar 

  143. Wang, B. C., Adams, M. W., Dailey, H., DeLucas, L., Luo, M., Rose, J., Bunzel, R., Dailey, T., Habel, J., Horanyi, P., Jenney, F. E., Jr, Kataeva, I., Lee, H. S., Li, S., Li, T., Lin, D., Liu, Z. J., Luan, C. H., Mayer, M., Nagy, L., Newton, M. G., Ng, J., Poole, F. L.,II, Shah, A., Shah, C., Sugar, F. J., and Xu, H. (2005) Protein Production and Crystallization at SECSG – an Overview. J. Struct. Funct. Genomics. 6, 233–243.

    PubMed  CAS  Google Scholar 

  144. Bucher, M. H., Evdokimov, A. G., and Waugh, D. S. (2002) Differential Effects of Short Affinity Tags on the Crystallization of Pyrococcus furiosus Maltodextrin-Binding Protein. Acta Crystallogr. D Biol. Crystallogr. 58, 392–397.

    PubMed  Google Scholar 

  145. Lee, J. E., Fusco, M. L., and Ollmann Saphire, E. (2009) An Efficient Platform for Screening Expression and Crystallization of Glycoproteins Produced in Human Cells. Nat. Protoc. 4, 592–604.

    PubMed  CAS  Google Scholar 

  146. Schlaeppi, J. M., Henke, M., Mahnke, M., Hartmann, S., Schmitz, R., Pouliquen, Y., Kerins, B., Weber, E., Kolbinger, F., and Kocher, H. P. (2006) A Semi-Automated Large-Scale Process for the Production of Recombinant Tagged Proteins in the Baculovirus Expression System. Protein Expr. Purif. 50, 185–195.

    PubMed  CAS  Google Scholar 

  147. Donnelly, M. I., Zhou, M., Millard, C. S., Clancy, S., Stols, L., Eschenfeldt, W. H., Collart, F. R., and Joachimiak, A. (2006) An Expression Vector Tailored for Large-Scale, High-Throughput Purification of Recombinant Proteins. Protein Expr. Purif. 47, 446–454.

    PubMed  CAS  Google Scholar 

  148. Vinarov, D. A., Lytle, B. L., Peterson, F. C., Tyler, E. M., Volkman, B. F., and Markley, J. L. (2004) Cell-Free Protein Production and Labeling Protocol for NMR-Based Structural Proteomics. Nat. Methods. 1, 149–153.

    PubMed  CAS  Google Scholar 

  149. Endo, Y., and Sawasaki, T. (2006) Cell-Free Expression Systems for Eukaryotic Protein Production. Curr. Opin. Biotechnol. 17, 373–380.

    PubMed  CAS  Google Scholar 

  150. Sawasaki, T., Ogasawara, T., Morishita, R., and Endo, Y. (2002) A Cell-Free Protein Synthesis System for High-Throughput Proteomics. Proc. Natl. Acad. Sci. U.S.A. 99, 14652–14657.

    PubMed  CAS  Google Scholar 

  151. Liguori, L., Marques, B., Villegas-Mendez, A., Rothe, R., and Lenormand, J. L. (2007) Production of Membrane Proteins Using Cell-Free Expression Systems. Expert Rev. Proteomics. 4, 79–90.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding from the Health Research Board (HRB grant RP/2005/212) and Enterprise Ireland (EI grant IP 2008-0530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dermot Walls .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Walls, D., Loughran, S.T. (2011). Tagging Recombinant Proteins to Enhance Solubility and Aid Purification. In: Walls, D., Loughran, S. (eds) Protein Chromatography. Methods in Molecular Biology, vol 681. Humana Press. https://doi.org/10.1007/978-1-60761-913-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-913-0_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-912-3

  • Online ISBN: 978-1-60761-913-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics