Skip to main content

Enzyme Stabilization via Bio-templated Silicification Reactions

  • Protocol
  • First Online:
Enzyme Stabilization and Immobilization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 679))

Abstract

Effective entrapment of enzymes in solid-phase materials is critical to their practical application. The entrapment generally stabilizes biological activity compared to soluble molecules and the material simplifies catalyst integration significantly. A silica sol-gel process based upon biological mechanisms of inorganic material formation (biomineralization) supports protein immobilization reactions within minutes. The material has high protein binding capacity and the catalytic activity of the enzyme is retained. We have demonstrated that both oligopeptides and selected proteins will mediate the biomineralization of silica and allow effective co-encapsulation of other proteins present in the reaction mixture. The detailed methods described here provide a simple and effective approach for molecular biologists, biochemists, and bioengineers to create stable, solid-phase biocatalysts that may be integrated within sensors, synthetic processes, reactive barriers, energy conversion materials, and other biotechnology concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gill, I., and Ballesteros, A. (1998) Encapsulation of biologicals within silicate, siloxane, and hybrid sol gel polymers: an efficient and generic approach, J. Am. Chem. Soc. 120, 8587–8598.

    Article  CAS  Google Scholar 

  2. Mansur, H., Orefice, R., Vasconcelos, W., Lobato, Z., and Machado, L. (2005) Bio­material with chemically engineered surface for protein immobilization, J. Mater. Sci. Mater. Med. 16, 333–340.

    Article  PubMed  CAS  Google Scholar 

  3. Dickey, F. H. (1955) Specific adsorption, J. Phys. Chem 59, 695–707.

    Article  CAS  Google Scholar 

  4. Braun, S., Rappoport, S., Zusman, R., Avnir, D., and Ottolenghi, M. (1990) Biochemically active sol-gel glasses: the trapping of enzymes, Mater. Lett. 10, 1–5.

    Article  CAS  Google Scholar 

  5. Brennan, J. (2007) Biofriendly sol-gel processing for the entrapment of soluble and membrane-bound proteins: toward novel solid-phase assays for high-throughput screening, Acc. Chem. Res. 40, 827–835.

    Article  PubMed  CAS  Google Scholar 

  6. Baeuerlein, E. (2007) Handbook of biomineralization: biological aspects and structure formation, Vol. 2, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

    Book  Google Scholar 

  7. Kröger, N., Deutzmann, R., and Sumper, M. (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation, Science 286, 1129–1132.

    Article  PubMed  Google Scholar 

  8. Kröger, N., Lorenz, S., Brunner, E., and Sumper, M. (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis, Science 298, 584–586.

    Article  PubMed  Google Scholar 

  9. Brott, L. L., Naik, R. R., Pikas, D. J., Kirkpatrick, S. M., Tomlin, D. W., Whitlock, P. W., Clarson, S. J., and Stone, M. O. (2001) Ultrafast holographic nanopatterning of biocatalytically formed silica, Nature 413, 291–293.

    Article  PubMed  CAS  Google Scholar 

  10. Luckarift, H. R., Spain, J. C., Naik, R. R., and Stone, M. O. (2004) Enzyme immobilization in a biomimetic silica support, Nat. Biotechnol. 22, 211.

    Article  PubMed  CAS  Google Scholar 

  11. Naik, R. R., Tomczak, M. M., Luckarift, H. R., Spain, J. C., and Stone, M. O. (2004) Entrapment of enzymes and nanoparticles using biomimetically synthesized silica, Chem. Comm. 1684–1685.

    Google Scholar 

  12. Betancor, L., and Luckarift, H. R. (2008) Bioinspired enzyme encapsulation for biocatalysis, Trends Biotechnol. 26, 566–572.

    Article  PubMed  CAS  Google Scholar 

  13. Sigma-Aldrich. Personal communication.

    Google Scholar 

  14. Kröger, N., Deutzmann, R., and Sumper, M. (2001) Silica-precipitating peptides from diatoms. The chemical structure of silaffin-A from Cylindrotheca fusiformis, J. Biol. Chem. 276, 26066–26070.

    Article  PubMed  CAS  Google Scholar 

  15. Kröger, N., Lorenz, S., Brunner, E., and Sumper, M. (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis, Science 298, 584–586.

    Article  PubMed  Google Scholar 

  16. Luckarift, H. R., Dickerson, M. B., Sandhage, K. H., and Spain, J. C. (2006) Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania, Small 2, 640–643.

    Article  PubMed  CAS  Google Scholar 

  17. Ivnitski, D., Artyushkova, K., Rincon, R. A., Atanassov, P., Luckarift, H. R., and Johnson, G. R. (2008) Entrapment of enzymes and carbon nanotubes in biologically synthesized silica: glucose oxidase-catalyzed direct electron transfer, Small 4, 357–364.

    Article  PubMed  CAS  Google Scholar 

  18. Naik, R. R., Brott, L. L., Clarson, S. J., and Stone, M. O. (2002) Silica-precipitating peptides isolated from a combinatorial phage display peptide library, J. Nanosci. Nanotechnol. 2, 95–100.

    Article  PubMed  CAS  Google Scholar 

  19. Eby, D. M., Farrington, K. E., and Johnson, G. R. (2008) Synthesis of bioinorganic antimicrobial peptide nanoparticles with potential therapeutic properties, Biomacromolecules 9, 2487–2494.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research related to the presented methods was supported by the Air Force Research Laboratory Materials Science Directorate, the Air Force Office of Scientific Research (Program Managers: Walt Kozumbo and Jennifer Gresham), and the Joint Science and Technology Office-Defense Threat Reduction Agency (Program Managers: Jennifer Becker and Stephen Lee).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Johnson, G.R., Luckarift, H.R. (2011). Enzyme Stabilization via Bio-templated Silicification Reactions. In: Minteer, S. (eds) Enzyme Stabilization and Immobilization. Methods in Molecular Biology, vol 679. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-895-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-895-9_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-894-2

  • Online ISBN: 978-1-60761-895-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics