Skip to main content

Stabilization of Enzymes Through Encapsulation in Liposomes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 679))

Abstract

Phospholipid vesicle (liposome) offers an aqueous compartment surrounded by lipid bilayer membranes. Various enzyme molecules were reported to be encapsulated in liposomes. The liposomal enzyme shows peculiar catalytic activity and selectivity to the substrate in the bulk liquid, which are predominantly derived from the substrate permeation resistance through the membrane. We reported that the quaternary structure of bovine liver catalase and alcohol dehydrogenase was stabilized in liposomes through their interaction with lipid membranes. The method and condition for preparing the enzyme-containing liposomes with well-defined size, lipid composition, and enzyme content are of particular importance, because these properties dominate the catalytic performance and stability of the liposomal enzymes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Walde, P. and Ichikawa, S. (2001) Enzymes inside lipid vesicle: preparation, reactivity and applications. Biomol. Eng. 18, 143–177.

    Article  PubMed  CAS  Google Scholar 

  2. Walde, P., Ichikawa, S., and Yoshimoto, M. (2009) The fabrication and applications of enzyme-containing vesicles (Chapter 7). In Ariga, K. and Nalwa, H. S. (Eds.) Bottom-Up Nanofabrication. American Scientific Publishers: Stevenson Ranch, CA, Vol. 2, pp. 199–222.

    Google Scholar 

  3. Treyer, M., Walde, P., and Oberholzer, T. (2002) Permeability enhancement of lipid vesicles to nucleotides by use of sodium cholate: basic studies and application to an enzyme-catalyzed reaction occurring inside the vesicles. Langmuir 18, 1043–1050.

    Article  CAS  Google Scholar 

  4. Yoshimoto, M., Wang, S., Fukunaga, K., Treyer, M., Walde, P., Kuboi, R., and Nakao, K. (2004) Enhancement of apparent substrate selectivity of proteinase K encapsulated in liposomes through a cholate-induced alterations of the bilayer permeability. Biotechnol. Bioeng. 85, 222–233.

    Article  PubMed  CAS  Google Scholar 

  5. Yoshimoto, M., Sakamoto, H., Yoshimoto, N., Kuboi, R., and Nakao, K. (2007) Stabilization of quaternary structure and activity of bovine liver catalase through encapsulation in liposomes. Enzyme Microb. Technol. 41, 849–858.

    Article  CAS  Google Scholar 

  6. Yoshimoto, M., Sato, M., Yoshimoto, N., and Nakao, K. (2008) Liposomal encapsulation of yeast alcohol dehydrogenase with cofactor for stabilization of the enzyme structure and activity. Biotechnol. Prog. 24, 576–582.

    Article  PubMed  CAS  Google Scholar 

  7. Yoshimoto, M., Miyazaki, Y., Sato, M., Fukunaga, K., Kuboi, R., and Nakao, K. (2004) Mechanism for high stability of liposomal glucose oxidase to inhibitor hydrogen peroxide produced in prolonged glucose oxidation. Bioconjugate Chem. 15, 1055–1061.

    Article  CAS  Google Scholar 

  8. Wang, S., Yoshimoto, M., Fukunaga, K., and Nakao, K. (2003) Optimal covalent immobilization of glucose oxidase-contaiing liposomes for highly stable biocatalyst in bioreactor. Biotechnol. Bioeng. 83, 444–453.

    Article  PubMed  CAS  Google Scholar 

  9. Yoshimoto, M., Miyazaki, Y., Kudo, Y., Fukunaga, K., and Nakao, K. (2006) Glucose oxidation catalyzed by liposomal glucose oxidase in the presence of catalase-containing liposomes. Biotechnol. Prog. 22, 704–709.

    Article  PubMed  CAS  Google Scholar 

  10. Yoshimoto, M., Wang, S., Fukunaga, K., Fournier, D., Walde, P., Kuboi, R., and Nakao, K. (2005) Novel immobilized liposomal glucose oxidase system using the channel protein OmpF and catalase. Biotechnol. Bioeng. 90, 231–238.

    Article  PubMed  CAS  Google Scholar 

  11. Kuboi, R., Yoshimoto, M., Walde, P., and Luisi, P. L. (1997) Refolding of carbonic anhydrase assisted by 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes. Biotechnol. Prog. 13, 828–836.

    Article  CAS  Google Scholar 

  12. Walde, P. (2004) Preparation of vesicles (liposomes). In Nalwa, H. S. (Ed.) Encyclopedia of Nanoscience and Nanotechnology. American Scientific Publishers: Los Angeles, Vol. 9, pp. 43–79.

    Google Scholar 

  13. MacDonald, R. C., MacDonald, R. I., Menco, B. P., Takeshita, K., Subbarao, N. K., and Hu, L.-R. (1991) Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim. Biophys. Acta 1061, 297–303.

    Article  PubMed  CAS  Google Scholar 

  14. Yoshimoto, M., Monden, M., Jiang, Z., and Nakao. K. (2007) Permeabilization of phospholipid bilayer membranes induced by gas–liquid flow in an airlift bubble column. Biotechnol. Prog. 23, 1321–1326.

    Article  PubMed  CAS  Google Scholar 

  15. Dorovska-Taran, V., Wick, R., and Walde, P. (1996) A 1H nuclear magnetic resonance method for investigating the phospholipase D-catalyzed hydrolysis of phosphatidylcholine in liposomes. Anal. Biochem. 240, 37–47.

    Article  PubMed  CAS  Google Scholar 

  16. Yoshimoto, M., Walde, P., Umakoshi, H., and Kuboi, R. (1999) Conformationally changed cytochrome c-induced fusion of enzyme- and substrate-containing liposomes. Biotechnol. Prog. 15, 689–696.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The author would like to thank Prof. Emeritus Katsumi Nakao (Yamaguchi Univ.) for his advice on biochemical engineering applications of enzyme-containing liposomes. This work was supported in part by the Japan Society of the Promotion of Science (no. 21760642).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yoshimoto, M. (2011). Stabilization of Enzymes Through Encapsulation in Liposomes. In: Minteer, S. (eds) Enzyme Stabilization and Immobilization. Methods in Molecular Biology, vol 679. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-895-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-895-9_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-894-2

  • Online ISBN: 978-1-60761-895-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics