Animal Models of Cancer Pain

  • Paul W. Wacnik
  • Cholawat Pacharinsak
  • Alvin J. Beitz
Part of the Neuromethods book series (NM, volume 49)


The incidence of cancer pain is high in patients with advanced disease as well as in patients undergoing active treatment for solid tumors. Further, modern cancer therapies have significantly increased survival rates, making effective pain control critical as unrelieved pain significantly decreases the quality of life of such patients. Thus, the goal of pain management is to not only alleviate pain, but also maintain the patient’s normal quality of life. To meet this challenge, novel analgesics with greater efficacy but fewer side effects are needed for alleviating cancer-induced pain. Recent advances in understanding the mechanism(s) of cancer pain have been assisted by the development of several rodent models that have shown that there are unique tumor-induced central and peripheral anatomical and pathophysiological changes, as well as physical and biochemical interactions between nerves, surrounding tissue, and tumor cells, which may be important to understand in order to develop better treatment strategies for cancer-associated pain. This review focuses on bone cancer pain models, nonbone cancer pain models, cancer invasion pain models, cancer chemotherapeutic-induced peripheral neuropathy, and spontaneous-occurring cancer pain models, all of which have contributed to a better understanding of the basis for tumor-induced pain and have allowed exploration of novel mechanistic-based therapies.


Neuropathic Pain Dorsal Root Ganglion Neuron Cancer Pain Mechanical Allodynia Pain Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Portenoy RK, Lesage P. Management of cancer pain. Lancet 1999;353:1695–700.PubMedCrossRefGoogle Scholar
  2. 2.
    Weinstein SM. New pharmacological strategies in the management of cancer pain. Cancer Invest 1998;16:94–101.PubMedCrossRefGoogle Scholar
  3. 3.
    Foley KM. Controlling cancer pain. Hosp Pract (Minneap) 2000;35:101, 8, 111–2.CrossRefGoogle Scholar
  4. 4.
    Caraceni A, Portenoy RK. An international survey of cancer pain characteristics and syndromes. IASP Task Force on Cancer Pain. International Association for the Study of Pain. Pain 1999;82:263–74.PubMedCrossRefGoogle Scholar
  5. 5.
    Grond S, Radbruch L, Meuser T, Sabatowski R, Loick G, Lehmann KA. Assessment and treatment of neuropathic cancer pain following WHO guidelines. Pain 1999;79:15–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Urch CE, Dickenson AH. Neuropathic pain in cancer. Eur J Cancer 2008;44:1091–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Cherny NI, Hiller N. Diagnostic investigations in cancer pain. Cancer Invest 2000;18:651–63.PubMedCrossRefGoogle Scholar
  8. 8.
    Foley KM. Advances in cancer pain. Arch Neurol 1999;56:413–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Vecht CJ. Cancer pain: a neurological perspective. Curr Opin Neurol 2000;13:649–53.PubMedCrossRefGoogle Scholar
  10. 10.
    Portenoy RK, Hagen NA. Breakthrough pain: definition, prevalence and characteristics. Pain 1990;41:273–81.PubMedCrossRefGoogle Scholar
  11. 11.
    Patt RB, Ellison NM. Breakthrough pain in cancer patients: characteristics, prevalence, and treatment. Oncology (Williston Park) 1998;12:1035–46; discussion 1049–52.Google Scholar
  12. 12.
    Banning A, Sjogren P, Henriksen H. Treatment outcome in a multidisciplinary cancer pain clinic. Pain 1991;47:129–34; discussion 127–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Mercadante S. Malignant bone pain: pathophysiology and treatment. Pain 1997;69:1–18.PubMedCrossRefGoogle Scholar
  14. 14.
    Rubens RD. Bone metastases – the clinical problem. Eur J Cancer 1998;34:210–3.PubMedCrossRefGoogle Scholar
  15. 15.
    Twycross RG. Management of pain in skeletal metastases. Clin Orthop Relat Res 1995;312:187–96.PubMedGoogle Scholar
  16. 16.
    Reale C, Turkiewicz AM, Reale CA. Antalgic treatment of pain associated with bone metastases. Crit Rev Oncol Hematol 2001;37:1–11.PubMedCrossRefGoogle Scholar
  17. 17.
    Ashby MA, Fleming BG, Brooksbank M, et al. Description of a mechanistic approach to pain management in advanced cancer. Preliminary report. Pain 1992;51:153–61.PubMedCrossRefGoogle Scholar
  18. 18.
    Vilensky W. Opioid “mythstakes”: opioid analgesics – current clinical and regulatory perspectives. J Am Osteopath Assoc 2002;102:S11–4.PubMedGoogle Scholar
  19. 19.
    Mercadante S, Portenoy RK. Opioid poorly-responsive cancer pain. Part 1: clinical considerations. J Pain Symptom Manage 2001;21:144–50.PubMedCrossRefGoogle Scholar
  20. 20.
    Ahmedzai S. Current strategies for pain control. Ann Oncol 1997;8 Suppl 3:S21–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Foley KM. Controlling the pain of cancer. Sci Am 1996;275:164–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Levy MH. Pharmacologic treatment of cancer pain. N Engl J Med 1996;335:1124–32.PubMedCrossRefGoogle Scholar
  23. 23.
    Cleary JF. Cancer pain management. Cancer Control 2000;7:120–31.PubMedGoogle Scholar
  24. 24.
    Miguel R. Interventional treatment of cancer pain: the fourth step in the World Health Organization analgesic ladder? Cancer Control 2000;7:149–56.PubMedGoogle Scholar
  25. 25.
    Thomas EM, Weiss SM. Nonpharmacological interventions with chronic cancer pain in adults. Cancer Control 2000;7:157–64.PubMedGoogle Scholar
  26. 26.
    Bruera E, Lawlor P. Cancer pain management. Acta Anaesthesiol Scand 1997;41:146–53.PubMedCrossRefGoogle Scholar
  27. 27.
    Mishra S, Bhatnagar S, Singhal AK. Recent trends in cancer pain management. Indian J Med Paediatr Oncol 2004;25:22–8.Google Scholar
  28. 28.
    Chang HM. Cancer pain management. Med Clin North Am 1999;83:711–36, vii.PubMedCrossRefGoogle Scholar
  29. 29.
    Daeninck PJ, Bruera E. Opioid use in cancer pain. Is a more liberal approach enhancing toxicity? Acta Anaesthesiol Scand 1999;43:924–38.PubMedCrossRefGoogle Scholar
  30. 30.
    Jenkins CA, Bruera E. Nonsteroidal anti-inflammatory drugs as adjuvant analgesics in cancer patients. Palliat Med 1999;13:183–96.PubMedCrossRefGoogle Scholar
  31. 31.
    Wilkinson AN, Viola R, Brundage MD. Managing skeletal related events resulting from bone metastases. BMJ 2008;337:a2041.PubMedCrossRefGoogle Scholar
  32. 32.
    Saito O, Aoe T, Yamamoto T. Analgesic effects of nonsteroidal antiinflammatory drugs, acetaminophen, and morphine in a mouse model of bone cancer pain. J Anesth 2005;19:218–24.PubMedCrossRefGoogle Scholar
  33. 33.
    Lees P, Landoni MF, Giraudel J, Toutain PL. Pharmacodynamics and pharmacokinetics of nonsteroidal anti-inflammatory drugs in species of veterinary interest. J Vet Pharmacol Ther 2004;27:479–90.PubMedCrossRefGoogle Scholar
  34. 34.
    Giraudel JM, Diquelou A, Lees P, Toutain PL. Development and validation of a new model of inflammation in the cat and selection of surrogate endpoints for testing anti-inflammatory drugs. J Vet Pharmacol Ther 2005;28:275–85.PubMedCrossRefGoogle Scholar
  35. 35.
    El Mouedden M, Meert TF. Evaluation of pain-related behavior, bone destruction and effectiveness of fentanyl, sufentanil, and morphine in a murine model of cancer pain. Pharmacol Biochem Behav 2005;82:109–19.PubMedCrossRefGoogle Scholar
  36. 36.
    KuKanich B, Lascelles BD, Papich MG. Pharmacokinetics of morphine and plasma concentrations of morphine-6-glucuronide following morphine administration to dogs. J Vet Pharmacol Ther 2005;28:371–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Urch CE, Donovan-Rodriguez T, Gordon-Williams R, Bee LA, Dickenson AH. Efficacy of chronic morphine in a rat model of cancer-induced bone pain: behavior and in dorsal horn pathophysiology. J Pain 2005;6:837–45.PubMedCrossRefGoogle Scholar
  38. 38.
    Ma C. Animal models of pain. Int Anesthesiol Clin 2007;45:121–31.PubMedCrossRefGoogle Scholar
  39. 39.
    Pacharinsak C, Beitz A. Animal models of cancer pain. Comp Med 2008;58:220–33.PubMedGoogle Scholar
  40. 40.
    Brown DC, Iadarola MJ, Perkowski SZ, et al. Physiologic and antinociceptive effects of intrathecal resiniferatoxin in a canine bone cancer model. Anesthesiology 2005;103:1052–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang LX, Wang ZJ. Animal and cellular models of chronic pain. Adv Drug Deliv Rev 2003;55:949–65.PubMedCrossRefGoogle Scholar
  42. 42.
    Gebhart GF. Animal models of pain. ILAR 1999;40
  43. 43.
    Honore P, Schwei J, Rogers SD, et al. Cellular and neurochemical remodeling of the spinal cord in bone cancer pain. Prog Brain Res 2000;129:389–97.PubMedCrossRefGoogle Scholar
  44. 44.
    Medhurst SJ, Walker K, Bowes M, et al. A rat model of bone cancer pain. Pain 2002;96:129–40.PubMedCrossRefGoogle Scholar
  45. 45.
    Urch CE, Donovan-Rodriguez T, Dickenson AH. Alterations in dorsal horn neurones in a rat model of cancer-induced bone pain. Pain 2003;106:347–56.PubMedCrossRefGoogle Scholar
  46. 46.
    Wacnik PW, Kehl LJ, Trempe TM, Ramnaraine ML, Beitz AJ, Wilcox GL. Tumor implantation in mouse humerus evokes movement-related hyperalgesia exceeding that evoked by intramuscular carrageenan. Pain 2003;101:175–86.PubMedCrossRefGoogle Scholar
  47. 47.
    Wacnik PW, Eikmeier LJ, Ruggles TR, et al. Functional interactions between tumor and peripheral nerve: morphology, algogen identification, and behavioral characterization of a new murine model of cancer pain. J Neurosci 2001;21:9355–66.PubMedGoogle Scholar
  48. 48.
    Wacnik PW, Wilcox GL, Clohisy DR, Ramnaraine ML, Eikmeier LJ, Beitz AJ. Cancer pain mechanisms and animal models of cancer pain. Proceeding of the 9th World Congress on Pain, Progress in Pain Research and management 2000;16:615–37.Google Scholar
  49. 49.
    Vermeirsch H, Nuydens RM, Salmon PL, Meert TF. Bone cancer pain model in mice: evaluation of pain behavior, bone destruction and morphine sensitivity. Pharmacol Biochem Behav 2004;79:243–51.PubMedCrossRefGoogle Scholar
  50. 50.
    Shimoyama M, Tatsuoka H, Ohtori S, Tanaka K, Shimoyama N. Change of dorsal horn neurochemistry in a mouse model of neuropathic cancer pain. Pain 2005;114:221–30.PubMedCrossRefGoogle Scholar
  51. 51.
    Schwei MJ, Honore P, Rogers SD, et al. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci 1999;19:10886–97.PubMedGoogle Scholar
  52. 52.
    Walker K, Medhurst SJ, Kidd BL, et al. Disease modifying and anti-nociceptive effects of the bisphosphonate, zoledronic acid in a model of bone cancer pain. Pain 2002;100:219–29.PubMedCrossRefGoogle Scholar
  53. 53.
    Wacnik PW, Ramnaraine MLR, Stone LS, Kitto KF, Laughlin TM, Mantyh PW, Beitz AJ, Wilcox GL. A practical model of cancer pain in mice comparing hind limb implantation of melanoma cells in the sciatic sheath, intramusculary, in the medullary canal or subcutaneously.. Soc Neurosci Abstr ( Los Angeles, CA) 1998;24(1):628.Google Scholar
  54. 54.
    Sasamura T, Nakamura S, Iida Y, et al. Morphine analgesia suppresses tumor growth and metastasis in a mouse model of cancer pain produced by orthotopic tumor inoculation. Eur J Pharmacol 2002;441:185–91.PubMedCrossRefGoogle Scholar
  55. 55.
    Khasabova IA, Khasabov SG, Harding-Rose C, et al. A decrease in anandamide signaling contributes to the maintenance of cutaneous mechanical hyperalgesia in a model of bone cancer pain. J Neurosci 2008;28:11141–52.PubMedCrossRefGoogle Scholar
  56. 56.
    Yamamoto J, Kawamata T, Niiyama Y, Omote K, Namiki A. Down-regulation of mu opioid receptor expression within distinct subpopulations of dorsal root ganglion neurons in a murine model of bone cancer pain. Neuroscience 2008;151:843–53.PubMedCrossRefGoogle Scholar
  57. 57.
    Betourne A, Familiades J, Lacassagne L, et al. Decreased motivational properties of morphine in mouse models of cancerous- or inflammatory-chronic pain: implication of supraspinal neuropeptide FF(2) receptors. Neuroscience 2008;157:12–21.PubMedCrossRefGoogle Scholar
  58. 58.
    Niiyama Y, Kawamata T, Yamamoto J, Omote K, Namiki A. Bone cancer increases transient receptor potential vanilloid subfamily 1 expression within distinct subpopulations of dorsal root ganglion neurons. Neuroscience 2007;148:560–72.PubMedCrossRefGoogle Scholar
  59. 59.
    Shinoda M, Ogino A, Ozaki N, et al. Involvement of TRPV1 in nociceptive behavior in a rat model of cancer pain. J Pain 2008;9:687–99.PubMedCrossRefGoogle Scholar
  60. 60.
    Ghilardi JR, Rohrich H, Lindsay TH, et al. Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. J Neurosci 2005;25:3126–31.PubMedCrossRefGoogle Scholar
  61. 61.
    Hald A, Ding M, Egerod K, et al. Differential effects of repeated low dose treatment with the cannabinoid agonist WIN 55,212-2 in experimental models of bone cancer pain and neuropathic pain. Pharmacol Biochem Behav 2008;91:38–46.PubMedCrossRefGoogle Scholar
  62. 62.
    Svensson CI, Medicherla S, Malkmus S, et al. Role of p38 mitogen activated protein kinase in a model of osteosarcoma-induced pain. Pharmacol Biochem Behav 2008;90:664–75.PubMedCrossRefGoogle Scholar
  63. 63.
    Constantin CE, Mair N, Sailer CA, et al. Endogenous tumor necrosis factor alpha (TNFalpha) requires TNF receptor type 2 to generate heat hyperalgesia in a mouse cancer model. J Neurosci 2008;28:5072–81.PubMedCrossRefGoogle Scholar
  64. 64.
    Wacnik PW, Eikmeier LJ, Simone DA, Wilcox GL, Beitz AJ. Nociceptive characteristics of tumor necrosis factor-alpha in naive and tumor-bearing mice. Neuroscience 2005;132:479–91.PubMedCrossRefGoogle Scholar
  65. 65.
    Pickering V, Jay Gupta R, Quang P, Jordan RC, Schmidt BL. Effect of peripheral endothelin-1 concentration on carcinoma-induced pain in mice. Eur J Pain 2008;12:293–300.PubMedCrossRefGoogle Scholar
  66. 66.
    Fujita M, Andoh T, Saiki I, Kuraishi Y. Involvement of endothelin and ET(A) endothelin receptor in mechanical allodynia in mice given orthotopic melanoma inoculation. J Pharmacol Sci 2008;106:257–63.PubMedCrossRefGoogle Scholar
  67. 67.
    Hamamoto DT, Khasabov SG, Cain DM, Simone DA. Tumor-evoked sensitization of C nociceptors: a role for endothelin. J Neurophysiol 2008;100:2300–11.PubMedCrossRefGoogle Scholar
  68. 68.
    Baamonde A, Curto-Reyes V, Juarez L, Meana A, Hidalgo A, Menendez L. Antihyperalgesic effects induced by the IL-1 receptor antagonist anakinra and increased IL-1beta levels in inflamed and osteosarcoma-bearing mice. Life Sci 2007;81:673–82.PubMedCrossRefGoogle Scholar
  69. 69.
    Wacnik PW, Baker CM, Herron MJ, et al. Tumor-induced mechanical hyperalgesia involves CGRP receptors and altered innervation and vascularization of DsRed2 fluorescent hindpaw tumors. Pain 2005;115:95–106.PubMedCrossRefGoogle Scholar
  70. 70.
    Sevcik MA, Ghilardi JR, Peters CM, et al. Anti-NGF therapy profoundly reduces bone cancer pain and the accompanying increase in markers of peripheral and central sensitization. Pain 2005;115:128–41.PubMedCrossRefGoogle Scholar
  71. 71.
    Sabino MA, Ghilardi JR, Jongen JL, et al. Simultaneous reduction in cancer pain, bone destruction, and tumor growth by selective inhibition of cyclooxygenase-2. Cancer Res 2002;62:7343–9.PubMedGoogle Scholar
  72. 72.
    Mantyh PW. Cancer pain and its impact on diagnosis, survival and quality of life. Nat Rev Neurosci 2006;7:797–809.PubMedCrossRefGoogle Scholar
  73. 73.
    Mantyh PW, Clohisy DR, Koltzenburg M, Hunt SP. Molecular mechanisms of cancer pain. Nat Rev Cancer 2002;2:201–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Donovan-Rodriguez T, Dickenson AH, Urch CE. Superficial dorsal horn neuronal responses and the emergence of behavioural hyperalgesia in a rat model of cancer-induced bone pain. Neurosci Lett 2004;360:29–32.PubMedCrossRefGoogle Scholar
  75. 75.
    Clohisy DR, Mantyh PW. Bone cancer pain. Clin Orthop Relat Res 2003;415 (Suppl):S279–88.PubMedCrossRefGoogle Scholar
  76. 76.
    Honore P, Mantyh PW. Bone cancer pain: from mechanism to model to therapy. Pain Med 2000;1:303–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Urch CE. Current and potential treatment for cancer-induced bone pain. AAHPM 2004;5(4):1–3, 7.Google Scholar
  78. 78.
    Mantyh PW, Hunt SP. Mechanisms that generate and maintain bone cancer pain. Novartis Found Symp 2004;260:221–38; discussion 238–40, 277–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Mantyh PW. A mechanism-based understanding of bone cancer pain. Novartis Found Symp 2004;261:194–214; discussion 214–9, 256–61.PubMedCrossRefGoogle Scholar
  80. 80.
    Mercadante S, Arcuri E. Breakthrough pain in cancer patients: pathophysiology and treatment. Cancer Treat Rev 1998;24:425–32.PubMedCrossRefGoogle Scholar
  81. 81.
    Regan JM, Peng P. Neurophysiology of cancer pain. Cancer Control 2000;7:111–.PubMedGoogle Scholar
  82. 82.
    Sabino MA, Mantyh PW. Pathophysiology of bone cancer pain. J Support Oncol 2005;3:15–24.PubMedGoogle Scholar
  83. 83.
    Urch C. The pathophysiology of cancer-induced bone pain: current understanding. Palliat Med 2004;18:267–74.PubMedCrossRefGoogle Scholar
  84. 84.
    Goblirsch MJ, Zwolak P, Clohisy DR. Advances in understanding bone cancer pain. J Cell Biochem 2005;96:682–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Goblirsch MJ, Zwolak PP, Clohisy DR. Biology of bone cancer pain. Clin Cancer Res 2006;12:6231s–5s.PubMedCrossRefGoogle Scholar
  86. 86.
    Gordon-Williams RM, Dickenson AH. Central neuronal mechanisms in cancer-induced bone pain. Curr Opin Support Palliat Care 2007;1:6–10.PubMedCrossRefGoogle Scholar
  87. 87.
    Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988;32:77–88.PubMedCrossRefGoogle Scholar
  88. 88.
    von Frey M. Verspätete schmerzempfindungen. Z gesamte Neurol Psychiat 1922;79:324–33.CrossRefGoogle Scholar
  89. 89.
    Jourdan D, Ardid D, Eschalier A. Automated behavioural analysis in animal pain studies. Pharmacol Res 2001;43:103–10.PubMedCrossRefGoogle Scholar
  90. 90.
    Lariviere WR, Wilson SG, Laughlin TM, et al. Heritability of nociception. III. Genetic relationships among commonly used assays of nociception and hypersensitivity. Pain 2002;97:75–86.PubMedCrossRefGoogle Scholar
  91. 91.
    Mogil JS, Wilson SG, Bon K, et al. Heritability of nociception I: responses of 11 inbred mouse strains on 12 measures of nociception. Pain 1999;80:67–82.PubMedCrossRefGoogle Scholar
  92. 92.
    Mogil JS, Crager SE. What should we be measuring in behavioral studies of chronic pain in animals? Pain 2004;112:12–5.PubMedCrossRefGoogle Scholar
  93. 93.
    Guise TA, Kozlow WM, Heras-Herzig A, Padalecki SS, Yin JJ, Chirgwin JM. Molecular mechanisms of breast cancer metastases to bone. Clin Breast Cancer 2005;5 Suppl:S46–53.PubMedCrossRefGoogle Scholar
  94. 94.
    Lindsay TH, Jonas BM, Sevcik MA, et al. Pancreatic cancer pain and its correlation with changes in tumor vasculature, macrophage infiltration, neuronal innervation, body weight and disease progression. Pain 2005;119:233–46.PubMedCrossRefGoogle Scholar
  95. 95.
    Sevcik MA, Jonas BM, Lindsay TH, et al. Endogenous opioids inhibit early-stage pancreatic pain in a mouse model of pancreatic cancer. Gastroenterology 2006;131:900–10.PubMedCrossRefGoogle Scholar
  96. 96.
    Nagamine K, Ozaki N, Shinoda M, et al. Mechanical allodynia and thermal hyperalgesia induced by experimental squamous cell carcinoma of the lower gingiva in rats. J Pain 2006;7:659–70.PubMedCrossRefGoogle Scholar
  97. 97.
    Dorsi MJ, Chen L, Murinson BB, Pogatzki-Zahn EM, Meyer RA, Belzberg AJ. The tibial neuroma transposition (TNT) model of neuroma pain and hyperalgesia. Pain 2008;134:320–34.PubMedCrossRefGoogle Scholar
  98. 98.
    Tyner TR, Parks N, Faria S, et al. Effects of collagen nerve guide on neuroma formation and neuropathic pain in a rat model. Am J Surg 2007;193:e1–6.PubMedCrossRefGoogle Scholar
  99. 99.
    Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 2001;27:165–76.PubMedCrossRefGoogle Scholar
  100. 100.
    Coleman RE, Rubens RD. The clinical course of bone metastases from breast cancer. Br J Cancer 1987;55:61–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Mercadante S, Fulfaro F. Management of painful bone metastases. Curr Opin Oncol 2007;19:308–14.PubMedCrossRefGoogle Scholar
  102. 102.
    Niiyama Y, Kawamata T, Yamamoto J, Furuse S, Namiki A. SB366791, a TRPV1 antagonist, potentiates analgesic effects of systemic morphine in a murine model of bone cancer pain. Br J Anaesth 2009;102:251–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Brainin-Mattos J, Smith ND, Malkmus S, et al. Cancer-related bone pain is attenuated by a systemically available delta-opioid receptor agonist. Pain 2006;122:174–81.PubMedCrossRefGoogle Scholar
  104. 104.
    Clohisy DR, Ramnaraine ML. Osteoclasts are required for bone tumors to grow and destroy bone. J Orthop Res 1998;16:660–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Honore P, Luger NM, Sabino MA, et al. Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nat Med 2000;6:521–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Thompson SW, Tonge D. Bone cancer gain without the pain. Nat Med 2000;6:504–5.PubMedCrossRefGoogle Scholar
  107. 107.
    Luger NM, Sabino MA, Schwei MJ, et al. Efficacy of systemic morphine suggests a fundamental difference in the mechanisms that generate bone cancer vs inflammatory pain. Pain 2002;99:397–406.PubMedCrossRefGoogle Scholar
  108. 108.
    King T, Vardanyan A, Majuta L, et al. Morphine treatment accelerates sarcoma-induced bone pain, bone loss, and spontaneous fracture in a murine model of bone cancer. Pain 2007;132:154–68.PubMedCrossRefGoogle Scholar
  109. 109.
    Halvorson KG, Kubota K, Sevcik MA, et al. A blocking antibody to nerve growth factor attenuates skeletal pain induced by prostate tumor cells growing in bone. Cancer Res 2005;65:9426–35.PubMedCrossRefGoogle Scholar
  110. 110.
    Menendez L, Lastra A, Hidalgo A, Meana A, Garcia E, Baamonde A. Peripheral opioids act as analgesics in bone cancer pain in mice. Neuroreport 2003;14:867–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Kehl LJ, Hamamoto DT, Wacnik PW, et al. A cannabinoid agonist differentially attenuates deep tissue hyperalgesia in animal models of cancer and inflammatory muscle pain. Pain 2003;103:175–86.PubMedCrossRefGoogle Scholar
  112. 112.
    Cain DM, Wacnik PW, Eikmeier L, Beitz A, Wilcox GL, Simone DA. Functional interactions between tumor and peripheral nerve in a model of cancer pain in the mouse. Pain Med 2001;2:15–23.PubMedCrossRefGoogle Scholar
  113. 113.
    Khasabov SG, Hamamoto DT, Harding-Rose C, Simone DA. Tumor-evoked hyperalgesia and sensitization of nociceptive dorsal horn neurons in a murine model of cancer pain. Brain Res 2007;1180:7–19.PubMedCrossRefGoogle Scholar
  114. 114.
    Kurbel S, Kurbel B, Kovacic D, et al. Endothelin-secreting tumors and the idea of the pseudoectopic hormone secretion in tumors. Med Hypotheses 1999;52:329–33.PubMedCrossRefGoogle Scholar
  115. 115.
    Asham E, Shankar A, Loizidou M, et al. Increased endothelin-1 in colorectal cancer and reduction of tumour growth by ET(A) receptor antagonism. Br J Cancer 2001;85:1759–63.PubMedCrossRefGoogle Scholar
  116. 116.
    Zhou QL, Strichartz G, Davar G. Endothelin-1 activates ET(A) receptors to increase intracellular calcium in model sensory neurons. Neuroreport 2001;12:3853–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Davar G. Endothelin-1 and metastatic cancer pain. Pain Med 2001;2:24–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Peters CM, Lindsay TH, Pomonis JD, et al. Endothelin and the tumorigenic component of bone cancer pain. Neuroscience 2004;126:1043–52.PubMedCrossRefGoogle Scholar
  119. 119.
    Hasue F, Kuwaki T, Yamada H, Fukuda Y, Shimoyama M. Inhibitory actions of endothelin-1 on pain processing. J Cardiovasc Pharmacol 2004;44:S318–20.PubMedCrossRefGoogle Scholar
  120. 120.
    Vit JP, Ohara PT, Tien DA, et al. The analgesic effect of low dose focal irradiation in a mouse model of bone cancer is associated with spinal changes in neuro-mediators of nociception. Pain 2006;120:188–201.PubMedCrossRefGoogle Scholar
  121. 121.
    Goblirsch M, Mathews W, Lynch C, et al. Radiation treatment decreases bone cancer pain, osteolysis and tumor size. Radiat Res 2004;161:228–34.PubMedCrossRefGoogle Scholar
  122. 122.
    Goblirsch M, Zwolak P, Ramnaraine ML, et al. Novel cytosine deaminase fusion gene enhances the effect of radiation on breast cancer in bone by reducing tumor burden, osteolysis, and skeletal fracture. Clin Cancer Res 2006;12:3168–76.PubMedCrossRefGoogle Scholar
  123. 123.
    Goblirsch M, Lynch C, Mathews W, Manivel JC, Mantyh PW, Clohisy DR. Radiation treatment decreases bone cancer pain through direct effect on tumor cells. Radiat Res 2005;164:400–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Dudek AZ, Zwolak P, Jasinski P, et al. Protein kinase C-beta inhibitor enzastaurin (LY317615.HCI) enhances radiation control of murine breast cancer in an orthotopic model of bone metastasis. Invest New Drugs 2008;26:13–24.PubMedCrossRefGoogle Scholar
  125. 125.
    Zwolak P, Dudek AZ, Bodempudi VD, et al. Local irradiation in combination with bevacizumab enhances radiation control of bone destruction and cancer-induced pain in a model of bone metastases. Int J Cancer 2008;122:681–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Seong J, Park HC, Kim J, Kim UJ, Lee BW. Radiation-induced alteration of pain-related signals in an animal model with bone invasion from cancer. Ann N Y Acad Sci 2004;1030:179–86.PubMedCrossRefGoogle Scholar
  127. 127.
    Park HC, Seong J, An JH, Kim J, Kim UJ, Lee BW. Alteration of cancer pain-related signals by radiation: proteomic analysis in an animal model with cancer bone invasion. Int J Radiat Oncol Biol Phys 2005;61:1523–34.PubMedCrossRefGoogle Scholar
  128. 128.
    Fox A, Medhurst S, Courade JP, et al. Anti-hyperalgesic activity of the cox-2 inhibitor lumiracoxib in a model of bone cancer pain in the rat. Pain 2004;107:33–40.PubMedCrossRefGoogle Scholar
  129. 129.
    Beyreuther BK, Callizot N, Brot MD, Feldman R, Bain SC, Stohr T. Antinociceptive efficacy of lacosamide in rat models for tumor- and chemotherapy-induced cancer pain. Eur J Pharmacol 2007;565:98–104.PubMedCrossRefGoogle Scholar
  130. 130.
    Donovan-Rodriguez T, Urch CE, Dickenson AH. Evidence of a role for descending serotonergic facilitation in a rat model of cancer-induced bone pain. Neurosci Lett 2006;393:237–42.PubMedCrossRefGoogle Scholar
  131. 131.
    Donovan-Rodriguez T, Dickenson AH, Urch CE. Gabapentin normalizes spinal neuronal responses that correlate with behavior in a rat model of cancer-induced bone pain. Anesthesiology 2005;102:132–40.PubMedCrossRefGoogle Scholar
  132. 132.
    Sessle BJ. Glia: non-neural players in orofacial pain. J Orofac Pain 2007;21:169–70.PubMedGoogle Scholar
  133. 133.
    Watkins LR, Hutchinson MR, Ledeboer A, Wieseler-Frank J, Milligan ED, Maier SF. Norman Cousins Lecture. Glia as the “bad guys”: implications for improving clinical pain control and the clinical utility of opioids. Brain Behav Immun 2007;21:131–46.PubMedCrossRefGoogle Scholar
  134. 134.
    Watkins LR, Milligan ED, Maier SF. Glial activation: a driving force for pathological pain. Trends Neurosci 2001;24:450–5.PubMedCrossRefGoogle Scholar
  135. 135.
    Zhang RX, Liu B, Wang L, et al. Spinal glial activation in a new rat model of bone cancer pain produced by prostate cancer cell inoculation of the tibia. Pain 2005;118:125–36.PubMedCrossRefGoogle Scholar
  136. 136.
    Zhang H, Cang CL, Kawasaki Y, et al. Neurokinin-1 receptor enhances TRPV1 activity in primary sensory neurons via PKCepsilon: a novel pathway for heat hyperalgesia. J Neurosci 2007;27:12067–77.PubMedCrossRefGoogle Scholar
  137. 137.
    Zhang RX, Li A, Liu B, et al. Electroa cupuncture attenuates bone-cancer-induced hyperalgesia and inhibits spinal preprodynorphin expression in a rat model. Eur J Pain 2008;12:870–8.PubMedCrossRefGoogle Scholar
  138. 138.
    Blouin S, Basle MF, Chappard D. Rat models of bone metastases. Clin Exp Metastasis 2005;22:605–14.PubMedCrossRefGoogle Scholar
  139. 139.
    Coleman RE. Management of bone metastases. Oncologist 2000;5:463–70.PubMedCrossRefGoogle Scholar
  140. 140.
    Bauerle T, Adwan H, Kiessling F, Hilbig H, Armbruster FP, Berger MR. Characterization of a rat model with site-specific bone metastasis induced by MDA-MB-231 breast cancer cells and its application to the effects of an antibody against bone sialoprotein. Int J Cancer 2005;115:177–86.PubMedCrossRefGoogle Scholar
  141. 141.
    Liepe K, Geidel H, Haase M, Hakenberg OW, Runge R, Kotzerke J. New model for the induction of osteoblastic bone metastases in rat. Anticancer Res 2005;25:1067–73.PubMedGoogle Scholar
  142. 142.
    Liepe K, Runge R, Kotzerke J. The benefit of bone-seeking radiopharmaceuticals in the treatment of metastatic bone pain. J Cancer Res Clin Oncol 2005;131:60–6.PubMedCrossRefGoogle Scholar
  143. 143.
    Jemal A, Murray T, Ward E, et al. Cancer statistics, 2005. CA Cancer J Clin 2005;55:10–30.PubMedCrossRefGoogle Scholar
  144. 144.
    Freedman SD, Callery MP. Central control of pancreatic cancer pain: protecting the enemy? Gastroenterology 2007;132:1191–2.PubMedCrossRefGoogle Scholar
  145. 145.
    Ceyhan GO, Michalski CW, Demir IE, Muller MW, Friess H. Pancreatic pain. Best Pract Res Clin Gastroenterol 2008;22:31–44.PubMedCrossRefGoogle Scholar
  146. 146.
    di Mola FF, di Sebastiano P. Pain and pain generation in pancreatic cancer. Langenbecks Arch Surg 2008;393(6):919–22.PubMedCrossRefGoogle Scholar
  147. 147.
    Hartel M, di Mola FF, Selvaggi F, et al. Vanilloids in pancreatic cancer: potential for chemotherapy and pain management. Gut 2006;55:519–28.PubMedCrossRefGoogle Scholar
  148. 148.
    Kuraishi Y, Iida Y, Zhang HW, et al. Suppression by gabapentin of pain-related mechano-responses in mice given orthotopic tumor inoculation. Biol Pharm Bull 2003;26:550–2.PubMedCrossRefGoogle Scholar
  149. 149.
    Andoh T, Sugiyama K, Fujita M, et al. Pharmacological evaluation of morphine and non-opioid analgesic adjuvants in a mouse model of skin cancer pain. Biol Pharm Bull 2008;31:520–2.PubMedCrossRefGoogle Scholar
  150. 150.
    Martin LA, Hagen NA. Neuropathic pain in cancer patients: mechanisms, syndromes, and clinical controversies. J Pain Symptom Manage 1997;14:99–117.PubMedCrossRefGoogle Scholar
  151. 151.
    Shimoyama M, Tanaka K, Hasue F, Shimoyama N. A mouse model of neuropathic cancer pain. Pain 2002;99:167–74.PubMedCrossRefGoogle Scholar
  152. 152.
    Zhu Z, Friess H, diMola FF, et al. Nerve growth factor expression correlates with perineural invasion and pain in human pancreatic cancer. J Clin Oncol 1999;17:2419–28.PubMedGoogle Scholar
  153. 153.
    Honore P. Behavioral assessment of neuropathic pain in preclinical models. Drug Dev Res 2006;67:302–7.CrossRefGoogle Scholar
  154. 154.
    Quasthoff S, Hartung HP. Chemotherapy-induced peripheral neuropathy. J Neurol 2002;249:9–17.PubMedCrossRefGoogle Scholar
  155. 155.
    Aley KO, Reichling DB, Levine JD. Vincristine hyperalgesia in the rat: a model of painful vincristine neuropathy in humans. Neuro science 1996;73:259–65.PubMedCrossRefGoogle Scholar
  156. 156.
    Tanner KD, Levine JD, Topp KS. Microtubule disorientation and axonal swelling in unmyelinated sensory axons during vincristine-induced painful neuropathy in rat. J Comp Neurol 1998;395:481–92.PubMedCrossRefGoogle Scholar
  157. 157.
    Cavaletti G, Bogliun G, Crespi V, et al. Neurotoxicity and ototoxicity of cisplatin plus paclitaxel in comparison to cisplatin plus cyclophosphamide in patients with epithelial ovarian cancer. J Clin Oncol 1997;15:199–206.PubMedGoogle Scholar
  158. 158.
    Cavaletti G, Tredici G, Braga M, Tazzari S. Experimental peripheral neuropathy induced in adult rats by repeated intraperitoneal administration of taxol. Exp Neurol 1995;133:64–72.PubMedCrossRefGoogle Scholar
  159. 159.
    Mimura Y, Kato H, Eguchi K, Ogawa T. Schedule dependency of paclitaxel-induced neuropathy in mice: a morphological study. Neurotoxicology 2000;21:513–20.PubMedGoogle Scholar
  160. 160.
    Strumberg D, Brugge S, Korn MW, et al. Evaluation of long-term toxicity in patients after cisplatin-based chemotherapy for non-seminomatous testicular cancer. Ann Oncol 2002;13:229–36.PubMedCrossRefGoogle Scholar
  161. 161.
    Polomano RC, Bennett GJ. Chemotherapy-evoked painful peripheral neuropathy. Pain Med 2001;2:8–14.PubMedCrossRefGoogle Scholar
  162. 162.
    Higuera ES, Luo ZD. A rat pain model of vincristine-induced neuropathy. Methods Mol Med 2004;99:91–8.PubMedGoogle Scholar
  163. 163.
    Authier N, Coudore F, Eschalier A, Fialip J. Pain related behaviour during vincristine-induced neuropathy in rats. Neuroreport 1999;10:965–8.PubMedCrossRefGoogle Scholar
  164. 164.
    Joseph EK, Levine JD. Sexual dimorphism for protein kinase c epsilon signaling in a rat model of vincristine-induced painful peripheral neuropathy. Neuroscience 2003;119:831–8.PubMedCrossRefGoogle Scholar
  165. 165.
    Tanner KD, Reichling DB, Levine JD. Nociceptor hyper-responsiveness during vincristine-induced painful peripheral neuropathy in the rat. J Neurosci 1998;18:6480–91.PubMedGoogle Scholar
  166. 166.
    Topp KS, Tanner KD, Levine JD. Damage to the cytoskeleton of large diameter sensory neurons and myelinated axons in vincristine-induced painful peripheral neuropathy in the rat. J Comp Neurol 2000;424:563–76.PubMedCrossRefGoogle Scholar
  167. 167.
    Nozaki-Taguchi N, Chaplan SR, Higuera ES, Ajakwe RC, Yaksh TL. Vincristine-induced allodynia in the rat. Pain 2001;93:69–76.PubMedCrossRefGoogle Scholar
  168. 168.
    Lynch JJ,3rd, Wade CL, Zhong CM, Mikusa JP, Honore P. Attenuation of mechanical allodynia by clinically utilized drugs in a rat chemotherapy-induced neuropathic pain model. Pain 2004;110:56–63.PubMedCrossRefGoogle Scholar
  169. 169.
    Kohler DR, Goldspiel BR. Paclitaxel (taxol). Pharmacotherapy 1994;14:3–34.PubMedGoogle Scholar
  170. 170.
    Rowinsky EK, Eisenhauer EA, Chaudhry V, Arbuck SG, Donehower RC. Clinical toxicities encountered with paclitaxel (taxol). Semin Oncol 1993;20:1–15.PubMedGoogle Scholar
  171. 171.
    Rowinsky EK, Chaudhry V, Cornblath DR, Donehower RC. Neurotoxicity of taxol. J Natl Cancer Inst Monogr 1993;15:107–15.PubMedGoogle Scholar
  172. 172.
    Rowinsky EK, Donehower RC. The clinical pharmacology of paclitaxel (taxol). Semin Oncol 1993;20:16–25.PubMedGoogle Scholar
  173. 173.
    Socinski MA, Langer CJ. Single-agent paclitaxel and paclitaxel/non-platinum combination therapy in advanced non-small cell lung cancer. Semin Oncol 1999;26:51–61; discussion 71–2.PubMedGoogle Scholar
  174. 174.
    Wiernik PH, Schwartz EL, Einzig A, Strauman JJ, Lipton RB, Dutcher JP. Phase I trial of taxol given as a 24-hour infusion every 21 days: responses observed in metastatic melanoma. J Clin Oncol 1987;5:1232–9.PubMedGoogle Scholar
  175. 175.
    Sahenk Z, Barohn R, New P, Mendell JR. Taxol neuropathy. Electrodiagnostic and sural nerve biopsy findings. Arch Neurol 1994;51:726–9.PubMedCrossRefGoogle Scholar
  176. 176.
    Polomano RC, Mannes AJ, Clark US, Bennett GJ. A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel. Pain 2001;94:293–304.PubMedCrossRefGoogle Scholar
  177. 177.
    Ueda H. Molecular mechanisms of neuropathic pain-phenotypic switch and initiation mechanisms. Pharmacol Ther 2006;109:57–77.PubMedCrossRefGoogle Scholar
  178. 178.
    Tamura T, Sasaki Y, Nishiwaki Y, Saijo N. Phase I study of paclitaxel by three-hour infusion: hypotension just after infusion is one of the major dose-limiting toxicities. Jpn J Cancer Res 1995;86:1203–9.PubMedCrossRefGoogle Scholar
  179. 179.
    Ohtsu T, Sasaki Y, Tamura T, et al. Clinical pharmacokinetics and pharmacodynamics of paclitaxel: a 3-hour infusion versus a 24-hour infusion. Clin Cancer Res 1995;1:599–606.PubMedGoogle Scholar
  180. 180.
    Rowinsky EK, Donehower RC. Paclitaxel (taxol). N Engl J Med 1995;332:1004–14.PubMedCrossRefGoogle Scholar
  181. 181.
    Wiernik PH, Schwartz EL, Strauman JJ, Dutcher JP, Lipton RB, Paietta E. Phase I clinical and pharmacokinetic study of taxol. Cancer Res 1987;47:2486–93.PubMedGoogle Scholar
  182. 182.
    De Brabander M, Geuens G, Nuydens R, Willebrords R, De Mey J. Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc Natl Acad Sci U S A 1981;78:5608–12.PubMedCrossRefGoogle Scholar
  183. 183.
    Kumar N. Taxol-induced polymerization of purified tubulin. Mechanism of action. J Biol Chem 1981;256:10435–41.PubMedGoogle Scholar
  184. 184.
    Horwitz SB. Mechanism of action of taxol. Trends Pharmacol Sci 1992;13:134–6.PubMedCrossRefGoogle Scholar
  185. 185.
    Boyle FM, Wheeler HR, Shenfield GM. Amelioration of experimental cisplatin and paclitaxel neuropathy with glutamate. J Neurooncol 1999;41:107–16.PubMedCrossRefGoogle Scholar
  186. 186.
    Cliffer KD, Siuciak JA, Carson SR, et al. Physiological characterization of Taxol-induced large-fiber sensory neuropathy in the rat. Ann Neurol 1998;43:46–55.PubMedCrossRefGoogle Scholar
  187. 187.
    Matsumoto M, Inoue M, Hald A, Xie W, Ueda H. Inhibition of paclitaxel-induced A-fiber hypersensitization by gabapentin. J Pharmacol Exp Ther 2006;318:735–40.PubMedCrossRefGoogle Scholar
  188. 188.
    Smith SB, Crager SE, Mogil JS. Paclitaxel-induced neuropathic hypersensitivity in mice: responses in 10 inbred mouse strains. Life Sci 2004;74:2593–604.PubMedCrossRefGoogle Scholar
  189. 189.
    Apfel SC, Lipton RB, Arezzo JC, Kessler JA. Nerve growth factor prevents toxic neuropathy in mice. Ann Neurol 1991;29:87–90.PubMedCrossRefGoogle Scholar
  190. 190.
    Authier N, Fialip J, Eschalier A, Coudore F. Assessment of allodynia and hyperalgesia after cisplatin administration to rats. Neurosci Lett 2000;291:73–6.PubMedCrossRefGoogle Scholar
  191. 191.
    Gispen WH, Hamers FP, Vecht CJ, Jennekens FG, Neyt JP. ACTH/MSH like peptides in the treatment of cisplatin neuropathy. J Steroid Biochem Mol Biol 1992;43:179–83.PubMedCrossRefGoogle Scholar
  192. 192.
    de Koning P, Neijt JP, Jennekens FG, Gispen WH. Org.2766 protects from cisplatin-induced neurotoxicity in rats. Exp Neurol 1987;97:746–50.PubMedCrossRefGoogle Scholar
  193. 193.
    Cata JP, Weng HR, Dougherty PM. Behavioral and electrophysiological studies in rats with cisplatin-induced chemoneuropathy. Brain Res 2008;1230:91–8.PubMedCrossRefGoogle Scholar
  194. 194.
    Fischer SJ, Podratz JL, Windebank AJ. Nerve growth factor rescue of cisplatin neurotoxicity is mediated through the high affinity receptor: studies in PC12 cells and p75 null mouse dorsal root ganglia. Neurosci Lett 2001;308:1–4.PubMedCrossRefGoogle Scholar
  195. 195.
    McDonald ES, Windebank AJ. Cisplatin-induced apoptosis of DRG neurons involves bax redistribution and cytochrome c release but not fas receptor signaling. Neurobiol Dis 2002;9:220–33.PubMedCrossRefGoogle Scholar
  196. 196.
    ter Laak MP, Hamers FP, Kirk CJ, Gispen WH. rhGGF2 protects against cisplatin-induced neuropathy in the rat. J Neurosci Res 2000;60:237–44.PubMedCrossRefGoogle Scholar
  197. 197.
    Pradat PF, Kennel P, Naimi-Sadaoui S, et al. Viral and non-viral gene therapy partially prevents experimental cisplatin-induced neuropathy. Gene Ther 2002;9:1333–7.PubMedCrossRefGoogle Scholar
  198. 198.
    Tassler P, Dellon AL, Lesser GJ, Grossman S. Utility of decompressive surgery in the prophylaxis and treatment of cisplatin neuropathy in adult rats. J Reconstr Microsurg 2000;16:457–63.PubMedCrossRefGoogle Scholar
  199. 199.
    Callizot N, Andriambeloson E, Glass J, et al. Interleukin-6 protects against paclitaxel, cisplatin and vincristine-induced neuropathies without impairing chemotherapeutic activity. Cancer Chemother Pharmacol 2008;62:995–1007.PubMedCrossRefGoogle Scholar
  200. 200.
    Karai L, Brown DC, Mannes AJ, et al. Deletion of vanilloid receptor 1-expressing primary afferent neurons for pain control. J Clin Invest 2004;113:1344–52.PubMedGoogle Scholar
  201. 201.
    Khasabov SG, Ghilardi JR, Mantyh PW, Simone DA. Spinal neurons that express NK-1 receptors modulate descending controls that project through the dorsolateral funiculus. J Neurophysiol 2005;93:998–1006.PubMedCrossRefGoogle Scholar
  202. 202.
    Allen JW, Mantyh PW, Horais K, et al. Safety evaluation of intrathecal substance P-saporin, a targeted neurotoxin, in dogs. Toxicol Sci 2006;91:286–98.PubMedCrossRefGoogle Scholar
  203. 203.
    Mouedden ME, Meert TF. Pharmacological evaluation of opioid and non-opioid analgesics in a murine bone cancer model of pain. Pharmacol Biochem Behav 2007;86:458–67.PubMedCrossRefGoogle Scholar
  204. 204.
    Zha S, Yegnasubramanian V, Nelson WG, Isaacs WB, De Marzo AM. Cyclooxygenases in cancer: progress and perspective. Cancer Lett 2004;215:1–20.PubMedCrossRefGoogle Scholar
  205. 205.
    Wood LJ, Nail LM, Gilster A, Winters KA, Elsea CR. Cancer chemotherapy-related symptoms: evidence to suggest a role for proinflammatory cytokines. Oncol Nurs Forum 2006;33:535–42.PubMedCrossRefGoogle Scholar
  206. 206.
    Body JJ, Mancini I. Bisphosphonates for cancer patients: why, how, and when? Support Care Cancer 2002;10:399–407.PubMedCrossRefGoogle Scholar
  207. 207.
    Fulfaro F, Casuccio A, Ticozzi C, Ripamonti C. The role of bisphosphonates in the treatment of painful metastatic bone disease: a review of phase III trials. Pain 1998;78:157–69.PubMedCrossRefGoogle Scholar
  208. 208.
    Clohisy DR, Mantyh PW. Bone cancer pain and the role of RANKL/OPG. J Musculoskelet Neuronal Interact 2004;4:293–300.PubMedGoogle Scholar
  209. 209.
    Blair JM, Zhou H, Seibel MJ, Dunstan CR. Mechanisms of Disease: roles of OPG, RANKL and RANK in the pathophysiology of skeletal metastasis. Nat Clin Pract Oncol 2006;3:E1.CrossRefGoogle Scholar
  210. 210.
    Nagae M, Hiraga T, Yoneda T. Acidic microenvironment created by osteoclasts causes bone pain associated with tumor colonization. J Bone Miner Metab 2007;25:99–104.PubMedCrossRefGoogle Scholar
  211. 211.
    Lacroix-Fralish ML, Ledoux JB, Mogil JS. The Pain Genes Database: an interactive web browser of pain-related transgenic knockout studies. Pain 2007;131:3.e1–3.e4.CrossRefGoogle Scholar
  212. 212.
    Kontinen VK, Kalso E. Of mice and men: what can we predict from the effects of morphine in a mouse model of bone cancer? Pain 2007;132:5–7.PubMedCrossRefGoogle Scholar
  213. 213.
    De Souza EB, Cload ST, Pendergrast PS, Sah DW. Novel therapeutic modalities to address nondrugable protein interaction targets. Neuropsychop harmacology 2009;34:142–58.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Paul W. Wacnik
    • 1
  • Cholawat Pacharinsak
    • 2
  • Alvin J. Beitz
    • 3
  1. 1.Neuromodulation ResearchMedtronic IncMinneapolisUSA
  2. 2.School of MedicineStanford UniversityStanfordUSA
  3. 3.College of Veterinary MedicineUniversity of MinnesotaSt. PaulUSA

Personalised recommendations