Skip to main content

Assessment of Pain in Animals

  • Protocol
  • First Online:
Animal Models of Pain

Part of the book series: Neuromethods ((NM,volume 49))

Abstract

The assessment of pain is of critical importance for mechanistic studies as well as for the validation of drug targets. The study of pain in awake animals raises ethical, philosophical, and technical problems. Philosophically, there is the problem that pain cannot be monitored directly in animals but can only be estimated by examining their responses to nociceptive stimuli; however, such responses do not necessarily mean that there is a concomitant sensation. In this chapter, I highlight several types of nociceptive stimuli (thermal, mechanical, or chemical), which have been used in different pain models such as acute pain, chronic pain, arthritis pain, inflammatory, and visceral pain. The monitored reactions are almost always motor responses ranging from spinal reflexes to complex behaviors. Most have the weakness that they may be associated with, or modulated by, other physiological functions. The main methods are reviewed in terms of their sensitivity, specificity, and predictiveness. Although the neural basis of the most commonly used tests is poorly understood, their use will be more profitable if pain is considered within the framework of, rather than apart from, the body’s homeostatic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCD:

Charge-coupled device

CNS:

Central nerve system

IASP:

International Association for the Study of Pain

LEDs:

Light-emitting diodes

PWL:

Paw withdrawal latency

PWT:

Paw withdrawal threshold

NK1:

Neurokinin 1

VAD:

Vocalization after discharge

VAS:

Visual analog scale

VDS:

Vocalization during stimulation

References

  1. Pain terms: a list with definitions and notes on usage. Recommended by the IASP Subcom mittee on Taxonomy. Pain 1979;6(3):249.

    Google Scholar 

  2. Portenoy RK. Neuropathic pain. In: Portenoy RK, Kanner RM, eds. Pain Management: Theory and Practice. Philadelphia: FD Davis; 1996:83–125.

    Google Scholar 

  3. Woolf CJ. Pain. Neurobiol Dis 2000;7(5):504–10.

    Article  PubMed  CAS  Google Scholar 

  4. Portenoy RK, Kanner RM. Definition and assessment of pain. In: Portenoy RK, Kanner RM, eds. Pain Management: Theory and Practice. Philadelphia: FD Davis; 1996:3–18.

    Google Scholar 

  5. Colpaert FC. Evidence that adjuvant arthritis in the rat is associated with chronic pain. Pain 1987;28(2):201–22.

    Article  PubMed  CAS  Google Scholar 

  6. Kauppila T. Correlation between autotomy-behavior and current theories of neuropathic pain. Neurosci Biobehav Rev 1998;23(1):111–29.

    Article  PubMed  CAS  Google Scholar 

  7. Rainville P. Brain mechanisms of pain affect and pain modulation. Curr Opin Neurobiol 2002;12(2):195–204.

    Article  PubMed  CAS  Google Scholar 

  8. Chang C, Shyu BC. A fMRI study of brain activations during non-noxious and noxious electrical stimulation of the sciatic nerve of rats. Brain Res 2001;897(1–2):71–81.

    Article  PubMed  CAS  Google Scholar 

  9. Zimmermann M. Behavioural investigations of pain in animals. In: Duncan IJH, Molony Y, eds. Assessing Pain in Farm Animals. Bruxelles: Office for Official Publications of the European Communities; 1986:16–29.

    Google Scholar 

  10. Hardy JD, Wolff HG, Goodell H. Studies on pain. A new method for measuring pain threshold: observations on spatial summation of pain. J Clin Invest 1940;19(4):649–57.

    Article  PubMed  CAS  Google Scholar 

  11. d’Amore A, Chiarotti F, Renzi P. High-intensity nociceptive stimuli minimize behavioral effects induced by restraining stress during the tail-flick test. J Pharmacol Toxicol Methods 1992;27(4):197–201.

    Article  PubMed  Google Scholar 

  12. Carstens E, Wilson C. Rat tail flick reflex: magnitude measurement of stimulus-response function, suppression by morphine and habituation. J Neurophysiol 1993;70(2):630–9.

    PubMed  CAS  Google Scholar 

  13. Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988;32(1):77–88.

    Article  PubMed  CAS  Google Scholar 

  14. Randall LO, Selitto JJ. A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn Ther 1957;111(4):409–19.

    PubMed  CAS  Google Scholar 

  15. Galbraith JA, Mrosko BJ, Myers RR. A system to measure thermal nociception. J Neurosci Methods 1993;49(1–2):63–8.

    Article  PubMed  CAS  Google Scholar 

  16. Ankier SI. New hot plate tests to quantify antinociceptive and narcotic antagonist activities. Eur J Pharmacol 1974;27(1):1–4.

    Article  PubMed  CAS  Google Scholar 

  17. Van Ree JM, Leys A. Behavioral effects of morphine and phencyclidine in rats: the influence of repeated testing before and after single treatment. Eur J Pharmacol 1985;113(3):353–62.

    Article  PubMed  Google Scholar 

  18. Bardo MT, Hughes RA. Exposure to a nonfunctional hot plate as a factor in the assessment of morphine-induced analgesia and analgesic tolerance in rats. Pharmacol Biochem Behav 1979;10(4):481–5.

    Article  PubMed  CAS  Google Scholar 

  19. Gamble GD, Milne RJ. Repeated exposure to sham testing procedures reduces reflex withdrawal and hot-plate latencies: attenuation of tonic descending inhibition? Neurosci Lett 1989;96(3):312–7.

    Article  PubMed  CAS  Google Scholar 

  20. Attal N, Jazat F, Kayser V, Guilbaud G. Further evidence for ‘pain-related’ behaviours in a model of unilateral peripheral mononeuropathy. Pain 1990;41(2):235–51.

    Article  PubMed  CAS  Google Scholar 

  21. Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988;33(1):87–107.

    Article  PubMed  CAS  Google Scholar 

  22. Dixon WJ. Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 1980;20:441–62.

    Article  PubMed  CAS  Google Scholar 

  23. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994;53(1):55–63.

    Article  PubMed  CAS  Google Scholar 

  24. Otsuki T, Nakahama H, Niizuma H, Suzuki J. Evaluation of the analgesic effects of capsaicin using a new rat model for tonic pain. Brain Res 1986;365(2):235–40.

    Article  PubMed  CAS  Google Scholar 

  25. Gegout-Pottie P, Philippe L, Simonin MA, et al. Biotelemetry: an original approach to experimental models of inflammation. Inflamm Res 1999;48(8):417–24.

    Article  PubMed  CAS  Google Scholar 

  26. Combe R, Bramwell S, Field MJ. The monosodium iodoacetate model of osteoarthritis: a model of chronic nociceptive pain in rats? Neurosci Lett 2004;370(2–3):236–40.

    Article  PubMed  CAS  Google Scholar 

  27. Sluka KA, Milton MA, Willis WD, Westlund KN. Differential roles of neurokinin 1 and neurokinin 2 receptors in the development and maintenance of heat hyperalgesia induced by acute inflammation. Br J Pharmacol 1997;120(7):1263–73.

    Article  PubMed  CAS  Google Scholar 

  28. Vrinten DH, Hamers FF. ‘CatWalk’ automated quantitative gait analysis as a novel method to assess mechanical allodynia in the rat; a comparison with von Frey testing. Pain 2003;102(1–2):203–9.

    Article  PubMed  Google Scholar 

  29. Tonussi CR, Ferreira SH. Rat knee-joint carrageenin incapacitation test: an objective screen for central and peripheral analgesics. Pain 1992;48(3):421–7.

    Article  PubMed  CAS  Google Scholar 

  30. Sluka KA, Westlund KN. Behavioral and immunohistochemical changes in an experimental arthritis model in rats. Pain 1993;55(3):367–77.

    Article  PubMed  Google Scholar 

  31. Gauldie SD, McQueen DS, Clarke CJ, Chessell IP. A robust model of adjuvant-induced chronic unilateral arthritis in two mouse strains. J Neurosci Methods 2004;139(2):281–91.

    Article  PubMed  Google Scholar 

  32. Skyba DA, Radhakrishnan R, Sluka KA. Characterization of a method for measuring primary hyperalgesia of deep somatic tissue. J Pain 2005;6(1):41–7.

    Article  PubMed  Google Scholar 

  33. Yu YC, Koo ST, Kim CH, Lyu Y, Grady JJ, Chung JM. Two variables that can be used as pain indices in experimental animal models of arthritis. J Neurosci Methods 2002;115(1):107–13.

    Article  PubMed  Google Scholar 

  34. Han JS, Bird GC, Li W, Jones J, Neugebauer V. Computerized analysis of audible and ultrasonic vocalizations of rats as a standardized measure of pain-related behavior. J Neurosci Methods 2005;141(2):261–9.

    Article  PubMed  Google Scholar 

  35. Siegmund E, Cadmus R, Lu G. A method for evaluating both non-narcotic and narcotic analgesics. Proc Soc Exp Biol Med 1957;95(4):729–31.

    PubMed  CAS  Google Scholar 

  36. Hammond D. Inference of pain and its modulation from simple behaviors. In: Chapman C, Loeser J, eds. Issues in Pain Measurement: Advances in Pain Research and Therapy. New York: Raven Press; 1989;12:69–91.

    PubMed  CAS  Google Scholar 

  37. Vyklicky L. Techniques for the study of pain in animals. In: Bonica J, Liebeskind J, Albe-Fessard D, eds. Advances in Pain Research and Therapy. New York: Raven Press; 1979;3:727–45.

    PubMed  CAS  Google Scholar 

  38. Harada T, Takahashi H, Kaya H, Inoki R. A test for analgesics as an indicator of locomotor activity in writhing mice. Arch Int Pharmacodyn Ther 1979;242(2):273–84.

    PubMed  CAS  Google Scholar 

  39. Dubuisson D, Dennis SG. The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 1977;4(2):161–74.

    Article  PubMed  CAS  Google Scholar 

  40. Hunskaar S, Fasmer OB, Hole K. Formalin test in mice, a useful technique for evaluating mild analgesics. J Neurosci Methods 1985;14(1):69–76.

    Article  PubMed  CAS  Google Scholar 

  41. Porro CA, Cavazzuti M. Spatial and temporal aspects of spinal cord and brainstem activation in the formalin pain model. Prog Neurobiol 1993;41(5):565–607.

    Article  PubMed  CAS  Google Scholar 

  42. Coderre TJ, Fundytus ME, McKenna JE, Dalal S, Melzack R. The formalin test: a validation of the weighted-scores method of behavioural pain rating. Pain 1993;54(1): 43–50.

    Article  PubMed  CAS  Google Scholar 

  43. Choi Y, Yoon YW, Na HS, Kim SH, Chung JM. Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain 1994;59(3):369–76.

    Article  PubMed  CAS  Google Scholar 

  44. Wall PD, Devor M, Inbal R, et al. Autotomy following peripheral nerve lesions: experimental anaesthesia dolorosa. Pain 1979;7(2):103–11.

    Article  PubMed  CAS  Google Scholar 

  45. Hansson P. Difficulties in stratifying neuropathic pain by mechanisms. Eur J Pain 2003;7(4):353–7.

    Article  PubMed  Google Scholar 

  46. Mogil JS. The genetic mediation of individual differences in sensitivity to pain and its inhibition. Proc Natl Acad Sci U S A 1999;96(14):7744–51.

    Article  PubMed  CAS  Google Scholar 

  47. Cizza G, Sternberg EM. The role of the hypothalamic-pituitary-adrenal axis in susceptibility to autoimmune/inflammatory disease. Immunomethods 1994;5(1):73–8.

    Article  PubMed  CAS  Google Scholar 

  48. West WL, Yeomans DC, Proudfit HK. The function of noradrenergic neurons in mediating antinociception induced by electrical stimulation of the locus coeruleus in two different sources of Sprague-Dawley rats. Brain Res 1993;626(1–2):127–35.

    Article  PubMed  CAS  Google Scholar 

  49. Mogil JS, Kest B, Sadowski B, Belknap JK. Differential genetic mediation of sensitivity to morphine in genetic models of opiate antinociception: influence of nociceptive assay. J Pharmacol Exp Ther 1996;276(2):532–44.

    PubMed  CAS  Google Scholar 

  50. Watling KJ, Guard S, Boyle SJ, McKnight AT, Woodruff GN. Species variants of tachykinin receptor types. Biochem Soc Trans 1994;22(1):118–22.

    PubMed  CAS  Google Scholar 

  51. Chapman CR, Nakamura Y. A passion of the soul: an introduction to pain for consciousness researchers. Conscious Cogn 1999;8(4):391–422.

    Article  PubMed  CAS  Google Scholar 

  52. Pasero C, Paice JA, McCaffery M. Basic mechanisms underlying the causes and effects of pain. In: McCaffery M, Pasero C, eds. Pain Clinical Manual. 2nd ed. St. Louis: Mosby Inc; 1999:15–34.

    Google Scholar 

  53. Byers M, Bonica JJ. Peripheral pain mechanisms and nociceptor plasticity. In: Loeser JD, Butler SH, Chapman CR, eds. Bonica’s Management of Pain 3rd ed. Baltimore: Lippincott Williams & Wilkins; 2001:26–72.

    Google Scholar 

  54. Coda BA, Bonica JJ. General considerations of acute pain. In: Loeser JD, Butler SH, Chapman CR, eds. Bonica’s Management of Pain. 3rd ed. Baltimore: Lippincott Williams & Wilkins; 2001:222–40.

    Google Scholar 

  55. Gebhart GF, Ness TJ. Central mechanisms of visceral pain. Can J Physiol Pharmacol 1991;69(5):627–34.

    Article  PubMed  CAS  Google Scholar 

  56. Portenoy RK. Mechanisms of clinical pain. Observations and speculations. Neurol Clin 1989;7(2):205–30.

    PubMed  CAS  Google Scholar 

  57. Backonja MM. Painful Neuropathies. In: Loeser JD, Butler SH, Chapman CR, Turk DC, eds. Bonica’s Management of Pain. 3rd ed. Baltimore: Lippincott Williams & Wilkins; 2001:371–87.

    Google Scholar 

  58. Galer BS, Schwartz L, Allen RJ. Complex regional pain syndromes—type I: reflex sympathetic dystrophy, and type II: causalgia. In: Loeser JD, Butler SH, Chapman CR, eds. Bonica’s Management of Pain. 3rd ed. Baltimore: Lippincott Williams & Wilkins; 2001:388–411.

    Google Scholar 

  59. Tasker RR. Central pain states. In: Loeser JD, Butler SH, Chapman CR, eds. Bonica’s Management of Pain. 3rd ed. Baltimore: Lippincott Williams & Wilkins; 2001:433–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Xie, W. (2011). Assessment of Pain in Animals. In: Ma, C., Zhang, JM. (eds) Animal Models of Pain. Neuromethods, vol 49. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-880-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-880-5_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-879-9

  • Online ISBN: 978-1-60761-880-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics