Advertisement

Organ Transplantation: Modulation of T-Cell Activation Pathways Initiated by Cell Surface Receptors to Suppress Graft Rejection

  • Kathleen Weatherly
  • Michel Y. Braun
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 677)

Abstract

T-cell activation depends upon two types of signals: a T-cell-receptor-mediated antigen-specific signal and several non-antigen-specific ones provided by the engagement of costimulatory and/or inhibitory T-cell surface molecules. In clinical transplantation, T-cell costimulatory/inhibitory molecules are involved in determining cytokine production, vascular endothelial cell damage, and induction of transplant rejection. Several of the latest new immunotherapeutic strategies being currently developed to control graft rejection aim at inhibiting alloreactive T-cell function by regulating activating and costimulatory/inhibitory signals to T cells. This article describes the recent development and potential application of these therapies in experimental and pre-clinical transplantation.

Key words

T-cell receptor Costimulation Transplantation Anergy Inhibitory receptors 

References

  1. 1.
    Cosimi, A. B., Colvin, R. B., Burton, R. C., Rubin, R. H., Goldstein, G., Kung, P. C., et al. (1981) Use of monoclonal antibodies to T-cell subsets for immunologic monitoring and treatment in recipients of renal allografts. N. Engl. J. Med. 305, 308–314.PubMedCrossRefGoogle Scholar
  2. 2.
    Vigeral, P., Chkoff, N., Chatenoud, L., Campos, H., Lacombe, M., Droz, D., et al. (1986) Prophylactic use of OKT3 monoclonal antibody in cadaver kidney recipients. Utilization of OKT3 as the sole immunosuppressive agent. Transplantation. 41, 730–733.PubMedCrossRefGoogle Scholar
  3. 3.
    Wesselborg, S., Janssen, O., and Kabelitz, D. (1993) Induction of activation-driven death (apoptosis) in activated but not resting peripheral blood T cells. J. Immunol. 150, 4338–4345.PubMedGoogle Scholar
  4. 4.
    Liu, Y., and Janeway, C. A. (1990) Interferon gamma plays a critical role in induced cell death of effector T cells: a possible third mechanism of self-tolerance. J. Exp. Med. 172, 1735–1739.PubMedCrossRefGoogle Scholar
  5. 5.
    Russell, J. H., Rush, B. J., Abrams, S. I., Wang, R. (1992) Sensitivity of T cells to anti-CD3 stimulated suicide is independent of functional properties. Eur. J. Immunol. 22, 1655–1658.PubMedCrossRefGoogle Scholar
  6. 6.
    Abramowicz, D., Schandene, L., Goldman, M., Crusiaux, A., Vereerstraeten, P., De Pauw, L., et al. (1989) Release of tumor necrosis factor, interleukin-2, and gamma-interferon in serum after injection of OKT3 monoclonal antibody in kidney transplant recipients. Transplantation. 47, 606–608.PubMedCrossRefGoogle Scholar
  7. 7.
    Hirsch, R., Gress, R. E., Pluznik, D. H., Eckhaus, M. and Bluestone J. A. (1989) Effects of in vivo administration of anti-CD3 monoclonal antibody on T cell function in mice. II. In vivo activation of T cells. J. Immunol. 142, 737–743.PubMedGoogle Scholar
  8. 8.
    Ferran, C., Sheehan, K., Dy, M., Schreiber, R., Merite, S., Landais, P., et al. (1990) Cytokine-related syndrome following injection of anti-CD3 monoclonal antibody: further evidence for transient in vivo T cell activation. Eur. J. Immunol. 20, 509–515.PubMedCrossRefGoogle Scholar
  9. 9.
    Alegre, M., Vandenabeele, P., Flamand, V., Moser, M., Leo, O., Abramowicz, D., et al. (1990) Hypothermia and hypoglycemia induced by anti-CD3 monoclonal antibody in mice: role of tumor necrosis factor. Eur. J. Immunol. 20, 707–710.PubMedCrossRefGoogle Scholar
  10. 10.
    Hirsch, R., Bluestone, J. A., De Nonno, L., and Gress, R. E. (1990) Anti-CD3 F(ab,)2 fragments are immunosuppressive in vivo without evoking either the strong humoral response and morbidity associated with whole mAb. Transplantation. 49, 1117–1123.PubMedCrossRefGoogle Scholar
  11. 11.
    Parlevliet, K. J., Ten Berge, I. J., Yong, S. L., Surachno, J., Wilmink, J. M., and Schellekens, P. T. (1994) In vivo effects of Iga and IgG2a anti-CD3 isotype switch variants. J. Clin. Invest. 93, 1117–1123.CrossRefGoogle Scholar
  12. 12.
    Plain, K. M., Chen, J., Merten, S., He, X. Y., Hall, B. M. (1999) Induction of specific tolerance to allografts in rats by therapy with non-mitogenic, non-depleting anti-CD3 monoclonal antibody: association with TH2 cytokines not anergy. Transplantation. 67, 605–613.PubMedCrossRefGoogle Scholar
  13. 13.
    Smith, J. A., Tang, Q., and Bluestone, J. A. (1998) Partial TcR signals delivered by FcR-non-binding anti-CD3 monoclonal antibodies differentially regulate individual Th subsets. J. Immunol. 160, 4841–4849.PubMedGoogle Scholar
  14. 14.
    Belghith, M., Bluestone, J. A., Barriot, S., Megret, J., Bach, J. F., Chatenoud, L. (2003) TGF-beta-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat. Med. 9, 1202–1208.PubMedCrossRefGoogle Scholar
  15. 15.
    Smith, J. A., Tso, J. Y., Clark, M. R., Cole, M.S., and Bluestone, J. A. (1997) Nonmitogenic anti-CD3 monoclonal antibodies deliver a partial T cell receptor signal and induce clonal anergy. J. Exp. Med. 185, 1413–1422.PubMedCrossRefGoogle Scholar
  16. 16.
    Schwartz, R. H. (2003) T cell anergy. Annu. Rev. Immunol. 21, 305–334.PubMedCrossRefGoogle Scholar
  17. 17.
    Zha, Y., Marks, R., Ho, A. W., Peterson, A. C., Janardhan, S., Brown, I., et al. (2006) T cell anergy is reversed by active Ras and by diacylglycerol kinase-α. Nat. Immunol. 7, 1166–1173.PubMedCrossRefGoogle Scholar
  18. 18.
    Veillette, A., Bookman, M. A., Horak, E. M., Bolen, J. B. (1988) The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell. 55, 301–308.PubMedCrossRefGoogle Scholar
  19. 19.
    Glaichenhaus, N., Shastri, N., Littman, D. R., and Turner, J. M. (1991) Requirement for association of p56lck with CD4 in antigen-specific signal transduction in T cells. Cell. 64, 511–520.PubMedCrossRefGoogle Scholar
  20. 20.
    Qin, S., Cobbold, S. P., Pope, H., Elliott, J., Kioussis, D., Davies, J., and Waldmann, H. (1993) “Infectious” transplantation tolerance. Science. 259, 974–977.PubMedCrossRefGoogle Scholar
  21. 21.
    Cobbold, S. P., Adams, E., Zelenika, D., Graca, L., Humm, S., Waldmann, H. (2004) Induction of Foxp3+ regulatory T cells in the periphery of T cell receptor transgenic mice tolerized to transplants. J. Immunol. 172, 6003–6010.PubMedGoogle Scholar
  22. 22.
    Winsor-Hines, D., Merrill, C., O’Mahony, M., Rao, P. E., Cobbold, S. P., Waldmann, H., et al. (2004) Induction of immunological tolerance/hyporesponsiveness in baboons with a nondepleting CD4 antibody. J. Immunol. 173, 4715–4723.PubMedGoogle Scholar
  23. 23.
    Linsley, P. S., Brady, W., Grosmaire, L., Aruffo, A., Damle, N. K., and Ledbetter, J. A. (1991) Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J. Exp. Med. 173, 721–730.PubMedCrossRefGoogle Scholar
  24. 24.
    Freeman, G. J., Gray, G. S., Gimmi, C. D., Lombard, D. B., Zhou, L. J., White, M., et al. (1991) Structure, expression, and T cell costimulatory activity of the murine homologue of the human B lymphocyte activation antigen B7. J. Exp. Med. 174, 625–631.PubMedCrossRefGoogle Scholar
  25. 25.
    Schneider, H., Cai, Y. C., Prasad, K. V., Shoelson, S. E., and Rudd, C. E. (1995) T cell antigen CD28 binds to the GRB-2/SOS complex, regulators of p21ras. Eur. J. Immunol. 25, 1044–1050.PubMedCrossRefGoogle Scholar
  26. 26.
    Cai, Y. C., Cefai, D., Schneider, H., Raab, M., Nabavi, N., and Rudd, C. E. (1995) Selective CD28pYMNM mutations implicate phosphatidylinositol 3-kinase in CD86-CD28-mediated costimulation. Immunity. 3, 417–426.PubMedCrossRefGoogle Scholar
  27. 27.
    August, A., Gibson, S., Kawakami, Y., Kawakami, T., Mills, G. B., and Dupont, B. (1994) CD28 is associated with and induces the immediate tyrosine phosphorylation and activation of the Tec family kinase ITK/EMT in the human Jurkat leukemic T-cell line. Proc. Natl. Acad. Sci. USA. 91, 9347–9351.PubMedCrossRefGoogle Scholar
  28. 28.
    Jones, R. G., Elford, A. R., Parsons, M. J., Wu, L., Krawczyk, C. M., Yeh, W. C., et al. (2002) CD28-dependent activation of protein kinase B/Akt blocks Fas-mediated apoptosis by preventing death-inducing signaling complex assembly. J. Exp. Med. 196, 335–348.PubMedCrossRefGoogle Scholar
  29. 29.
    Parry, R. V., Whittaker, G. C., Sims, M., Edmead, C. E., Welham, M. J., and Ward, S. J. (2006) Ligation of CD28 stimulates the formation of a multimeric signaling complex involving grb-2-associated binder 2 (gab2), SRC homology phosphatase-2, and phosphatidylinositol 3-kinase: evidence that negative regulation of CD28 signaling requires the gab2 pleckstrin homology domain. J. Immunol. 176, 594–602.PubMedGoogle Scholar
  30. 30.
    August, A., and Dupont, B. (1995) Activation of extracellular signal-regulated protein kinase (ERK/MAP kinase) following CD28 cross-linking: activation in cells lacking p56lck. Tissue Antigen. 46, 155–162.CrossRefGoogle Scholar
  31. 31.
    Haspot, F., Séveno, S., Dugast, A. -S., Coulon, F., Renaudin, K., Usal, C., et al. (2005) Anti-CD28 antibody-induced kidney allograft tolerance related to tryptophan degradation and TCR class II B7 regulatory cells. Am. J. Transplant. 5, 2339–2348.PubMedCrossRefGoogle Scholar
  32. 32.
    Linsley, P. S., Brady, W., Urnes, M., Grosmaire, L. S., Damle, N. K., and Ledbetter, J. A. (1991) CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 174, 561–569.PubMedCrossRefGoogle Scholar
  33. 33.
    Walunas, T. L., Bakker, C. Y., and Bluestone, J. A. (1996) CTLA-4 ligation blocks CD28-dependent T cell activation. J. Exp. Med. 183, 2541–2550.PubMedCrossRefGoogle Scholar
  34. 34.
    Waterhouse, P., Penninger, J. M., Timms, E., Wakeham, A., Shahinian, A., Lee, K. P., et al. (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 270, 985–988.PubMedCrossRefGoogle Scholar
  35. 35.
    Shiratori, T., Miyatake, S., Ohno, H., Nakaseko, C., Isono, K., Bonifacino, J. S., and Saito, T. (1997) Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity. 6, 583–589.PubMedCrossRefGoogle Scholar
  36. 36.
    Gandhi, A. M., Fazli, U., Rodina, V., and Qazi, Y. A. (2007) Costimulation targeting therapies in organ transplantation. Curr. Opin. Organ Transplant. 13, 622–626.CrossRefGoogle Scholar
  37. 37.
    Lee, K. M., Chuang, E., Griffin, M., Khattri, R., Hong, D. K., Zhang, W., et al. (1998) Molecular basis of T cell inactivation by CTLA-4. Science. 282, 2263–2266.PubMedCrossRefGoogle Scholar
  38. 38.
    Chuang, E., Fisher, T. S., Morgan, R.W., Robbins, M. D., Duerr, J. M., Vander Heiden, M. G., et al. (2000) The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity. 13, 313–322.PubMedCrossRefGoogle Scholar
  39. 39.
    Chikuma, S., Imboden, J. B., and Bluestone, J. A. (2003) Negative regulation of T cell receptor-lipid raft interaction by cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 197, 129–135.PubMedCrossRefGoogle Scholar
  40. 40.
    Nishimura, H., Nose, M., Hiai, H., Minato, N., and Honjo, T. (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 11, 141–151.PubMedCrossRefGoogle Scholar
  41. 41.
    Chemnitz, J. M., Parry, R. V., Nichols, K. E., June, C. H., and Riley, J. L. (2004) SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol. 173, 945–954.PubMedGoogle Scholar
  42. 42.
    Sheppard, K.-L., Fitz, L. J., Lee, J. M., Benander, C., George, J. A., Wooters, J., et al. (2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett. 574, 37–41.PubMedCrossRefGoogle Scholar
  43. 43.
    Parry, R. V., Chemnitz, R. J., Frauwirth, K. A., Lanfranco, A. R., Braunstein, I., Kobayashi, S. V., et al. (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol. 25, 9543–9553.PubMedCrossRefGoogle Scholar
  44. 44.
    Nishimura, H., Okazaki, T., Tanaka, Y., Nakatani, K., Hara, M., Matsumori, A., et al. (2001) Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science. 291, 319–322.PubMedCrossRefGoogle Scholar
  45. 45.
    Salama, A. D., Chitnis, T., Imitola, J., Ansari, M. J. I., Akiba, H., Tushima, F., et al. (2003) Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J. Exp. Med. 198, 71–78.PubMedCrossRefGoogle Scholar
  46. 46.
    Ansari, M. J. I., Salama, A. D., Chitnis, T., Smith, R. N., Yagita, H., Akiba, H., et al. (2003) The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J. Exp. Med. 198, 63–69.PubMedCrossRefGoogle Scholar
  47. 47.
    Fife, B. T., Pauken, K. E., Eagar, T. D., Obu, T., Wu, J., Tang, Q., et al. (2009) Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat. Immunol. 10, 1185–1192.PubMedCrossRefGoogle Scholar
  48. 48.
    Latchman, Y., Wood, C. R., Chernova, T., Chaudhary, D., Borde, M., Chernova, I., et al. (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2, 261–268.PubMedCrossRefGoogle Scholar
  49. 49.
    Butte, M. J., Keir, M. E., Phamduy, T. B., Sharpe, A. H., and Freeman, G. J. (2007) Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. 27, 111–122.PubMedCrossRefGoogle Scholar
  50. 50.
    Ozkaynak, E., Wang, L., Goodearl, A., McDonald, K., Qin, S., O’Keefe, T., et al. (2002) Programmed death-1 targeting can promote allograft survival. J. Immunol. 169, 6546–6553.PubMedGoogle Scholar
  51. 51.
    Yang, J., Popoola, J., Khandwala, S., Vadivel, N., Vanguri, V., Yuan, X., et al. (2008) Critical role of donor tissue expression of programmed death ligand-1 in regulating cardiac allograft rejection and vasculopathy. Circulation. 117, 660–669.PubMedCrossRefGoogle Scholar
  52. 52.
    Elgueta, R., Benson, M. J., de Vries, V. C., Wasiuk, A., Guo, Y., and Noelle, R. J. (2009) Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev. 229, 152–172.PubMedCrossRefGoogle Scholar
  53. 53.
    Yuan, X., Dong, V. M., Coito, A. J., Waaga, A.-M., Salama, A. D., Benjamin, C. D., et al. (2002) A novel CD154 monoclonal antibody in acute and chronic rat vascularized cardiac allograft rejection. Transplantation. 73, 1736–1742.PubMedCrossRefGoogle Scholar
  54. 54.
    Guillonneau, C., Hill, M., Hubert, F.-X., Chiffoleau, E., Hervé, C., Li, X.-L., et al. (2007) CD40Ig treatment results in allograft acceptance mediated by CD8CD45RC T cells, IFN-gamma, and indoleamine 2,3-dioxygenase. J. Clin. Invest. 117, 1096–1106.PubMedCrossRefGoogle Scholar
  55. 55.
    Kanmaz, T., Fechner, J. J. H., Torrealba, J., Kim, H. T., Dong, Y., Oberley, T. D., et al. (2004) Monotherapy with the novel human anti-CD154 monoclonal antibody ABI793 in rhesus monkey renal transplantation model. Transplantation. 77, 914–920.PubMedCrossRefGoogle Scholar
  56. 56.
    Kirk, A. D., Harlan, D. M., Armstrong, N. N., Davis, T. A., Dong, Y., Gray, G. S., et al. (1997) CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc. Natl. Acad. Sci. USA. 94, 8789–8794.PubMedCrossRefGoogle Scholar
  57. 57.
    Ramirez, C. B., and Marino, I. R. (2007) The role of basiliximab induction therapy in organ transplantation. Expert. Opin. Biol. Ther. 7, 137–148.PubMedCrossRefGoogle Scholar
  58. 58.
    Lúdvíksson, B. R., Gray, B., Strober, W., and Ehrhardt, R.O. (1997) Dysregulated intrathymic development in the IL-2-deficient mouse leads to colitis-inducing thymocytes. J. Immunol. 158, 104–111.PubMedGoogle Scholar
  59. 59.
    Fontenot, J. D., Rasmussen, J. P., Gavin, M. A., and Rudensky, A. Y. (2005) A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6, 1142–1151.PubMedCrossRefGoogle Scholar
  60. 60.
    Dai, Z., Konieczny, B. T., Baddoura, F. K., and Lakkis, F. G. (1998) Impaired alloantigen-mediated T cell apoptosis and failure to induce long-term allograft survival in IL-2-deficient mice. J. Immunol. 161, 1659–1663.PubMedGoogle Scholar
  61. 61.
    Kuttler, B., Kauert, C., Wanka, H., Diamantstein, T., and Hahn, H. J. (1996) Temporary anti-CD25/CsA therapy induces a CD4+ T-cell-mediated tolerance in BB/OK rats. J. Autoimmun. 9, 321–329.PubMedCrossRefGoogle Scholar
  62. 62.
    Bielekova, B., Catalfamo, M., Reichert-Scrivner S., Paker, A., Cerna, M., Waldmann, T. A., et al. (2006) Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2Ralpha-targeted therapy (daclizumab) in multiple sclerosis. Proc. Natl. Acad. Sci. USA. 103, 5941–5946.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2010

Authors and Affiliations

  • Kathleen Weatherly
    • 1
  • Michel Y. Braun
    • 1
  1. 1.Institute for Medical ImmunologyUniversité Libre de Bruxelles (ULB)GosseliesBelgium

Personalised recommendations