Advertisement

A Mesenchymal Stem Cell Potency Assay

  • Joy Jiao
  • Jack M. Milwid
  • Martin L. Yarmush
  • Biju Parekkadan
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 677)

Abstract

Mesenchymal stem cells (MSCs) are capable of modulating the immune system and have been used to successfully treat a variety of inflammatory diseases in preclinical studies. Recent evidence has implicated paracrine signaling as the predominant mechanism of MSC therapeutic activity. We have shown in models of inflammatory organ failure that the factors secreted by MSCs are capable of enhancing survival, downregulating inflammation, and promoting endogenous repair programs that lead to the reversal of these diseases. As a marker of disease resolution, we have observed an increase in serum IL-10 when MSC-conditioned medium (MSC-CM) or lysate (MSC-Ly) is administered in vivo. Here we present an in vitro model of IL-10 release from blood cells that recapitulates this in vivo phenomenon. This assay provides a powerful tool in analyzing the potency of MSC-CM and MSC-Ly, as well as characterizing the interaction between MSC-CM and target cells in the blood.

Key words

Mesenchymal stem cell IL-10 Potency assay Organ injury Inflammation Auto-immunity Transplantation 

Notes

Acknowledgments

This work was partially supported by grants from the National Institutes of Health (R01 DK43371), MIT Class of 1972 Fund, and the Shriners Hospitals for Children.

References

  1. 1.
    Le Blanc, K., I. Rasmusson, B. Sundberg, C. Gotherstrom, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. The Lancet 363.9419 (2004): 1439–441.CrossRefGoogle Scholar
  2. 2.
    Aggarwal, S., M. F. Pittenger. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 10.4 (2005): 1815–822.CrossRefGoogle Scholar
  3. 3.
    Bartholomew, A., C. Sturgeon, M. Siatskas, K. Ferrer, K. McIntosh, S. Patil, W. Hardy, S. Devine, D. Ucker, R. Deans, A. Moseley, R. Hoffman. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental Hematology 30.1 (2002): 42–48.PubMedCrossRefGoogle Scholar
  4. 4.
    Ringden, O., M. Uzunel, I. Rasmusson, M. Remberger, B. Sundberg, H. Lonnies, HU Marschall, A. Dlugosz, A. Szakos, Z. Hassan, B. Omazic, J. Aschan, L. Barkholt, K. Le Blanc. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81.10 (2006): 1390–397.PubMedCrossRefGoogle Scholar
  5. 5.
    Perin, E. C., H. F. Dohmann, R. Borojevic, S. A. Silva, A. L. Sousa, C. T. Mesquita, M. I. Rossi, A. C. Carvalho, H. S. Dutra, H. J. Dohmann, G. V. Silva, L. Belem, R. Vivacqua, F. O. Rangel, R. Esporcatte, Y. J. Geng, W. K. Vaughn, J. A. Assad, E. T. Mesquita, J. T. Willerson. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107.18 (2003): 9040–42.CrossRefGoogle Scholar
  6. 6.
    Miyahara, Y., N. Nagaya, M. Kataoka, B. Yanagawa, K. Tanaka, H. Hao, K. Ishino, H. Ishida, T.Shimizu, K. Kangawa, S. Sano, T. Okano, S. Kitamura, H. Mori. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nature Medicine 12 (2006): 459–65.PubMedCrossRefGoogle Scholar
  7. 7.
    Jin, H. K., J. E. Carter, G. W. Hungtley, E. H. Schuchman. Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase-deficient mice delays the onset of neurological abnormalities and extends their life span. Journal of Clinical Investigation 109.9 (2002): 1183–191.PubMedGoogle Scholar
  8. 8.
    Zhao, L. R., W. M Duan, M. Reyes, C. D. Keene, C. M. Verfaillie, W. C. Low. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Experimental Neurology 174.1 (2002): 11–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Giordano, A., U. Galderisi, I. R. Marino. From the laboratory bench to the patient’s bedside: An update on clinical trials with mesenchymal stem cells. Journal of Cellular Physiology 211.1 (2007): 27–35.PubMedCrossRefGoogle Scholar
  10. 10.
    Horwitz, E. M., D. J. Prockop, L. A. Fitzpatrick, W. W. Koo, P. L. Gordon, M. Neel, M. Sussman, P. Orchard, J. C. Marx, R. E. Pyeritz, M. K. Brenner. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nature Medicine 5 (1999): 309–13.PubMedCrossRefGoogle Scholar
  11. 11.
    Gnecchi, M., H. He, N. Noiseux, O. D. Liang, L. Zhang, F. Morello, H. Mu, L. G. Melo, R. E. Pratt, J. S. Ingwall, V. J. Dzau. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. The FASEB Journal 20 (2006): 661–69.CrossRefGoogle Scholar
  12. 12.
    Mirotsou, M., Z. Zhang, A. Deb, L. Zhang, M. Gnecchi, N. Noiseux, H. Mu, A.Pachori, V. Dzau. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. PNAS 104.5 (2006): 1643–648.CrossRefGoogle Scholar
  13. 13.
    Kinnarid, T., E. Stabile, M. S. Burnett, C. W. Lee, S. Barr, S. Fuchs, S. E. Epstein. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circulation Research 94 (2004): 678–85.CrossRefGoogle Scholar
  14. 14.
    Parekkadan, B., D. VanPoll, K. Suganuma, E. A. Carter, F. Berthiaume, A. W. Tilles, M. L. Yarmush. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One 2.9 (2007): e941.PubMedCrossRefGoogle Scholar
  15. 15.
    Van Poll, D., B. Parekkadan, C. H. Cho, F. Berthiaume, Y. Nahmias, A. W. Tilles, M. L. Yarmush. Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology 47.5 (2008): 1634–643.PubMedCrossRefGoogle Scholar
  16. 16.
    Németh, K., A. Leelahavanichkul, P. S. Yuen, B. Mayer, A. Parmelee, K. Doi, P. G. Robey, K. Leelahavanichkul, B. H. Koller, J. M. Brown, X. Hu, I. Jelinek, R. A. Star, É. Mezey. Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine 15 (2008): 42–49.PubMedCrossRefGoogle Scholar
  17. 17.
    De Waal Malefyt, R., J. Abrams, B. Bennett, C. G. Figdor, J. E. de Vries. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. Journal of Experimental Medicine 174 (1991): 1209–220.PubMedCrossRefGoogle Scholar
  18. 18.
    Deng, J., Y. Kohda, H. Chiao, Y. Wang, X. Hu, S. M. Hewitt, T. Miyaji, P. Mcleroy, B. Nibhanupudy, S. Lim, R. A. Star. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney International 60 (2001): 2118–128.PubMedCrossRefGoogle Scholar
  19. 19.
    Parekkadan, B. Cellular and molecular immunotherapeutics derived from the bone marrow stroma. Massachusetts Institute of Technology, Doctoral Thesis (2008).Google Scholar
  20. 20.
    Lazarus, H., O. Koc, S. Devine, P. Curtin, R. Maziarz, H. Holland, E. Shpall, P. McCarthy, K. Atkinson, B. Cooper. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biology of Blood and Marrow Transplantation 11.5 (2005): 389–98.PubMedCrossRefGoogle Scholar
  21. 21.
    Baba, S. Clinical trials of regeneration for periodontal tissue. Home – ClinicalTrials.gov. (2005). Web. 18 Aug 2009. <http://clinicaltrials.gov/ct2/show/NCT00221130>.
  22. 22.
    Kastrup, J. Stem cell therapy for vasculogenesis in patients with severe myocardial ischemia. Home – ClinicalTrials.gov. (2005). Web. 18 Aug 2009. <http://clinicaltrials.gov/ct2/show/NCT00260338>.
  23. 23.
    Lee, O. K., T. K. Kuo, W. M. Chen, K. D. Lee, S. L. Hsieh, T. H. Chen. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103 (2004): 1669–675.PubMedCrossRefGoogle Scholar
  24. 24.
    Bianco, P., S. A. Kuznetsov, M. Riminucci, L. W. Fisher, A. M. Spiegel, P. G. Robey. Reproduction of human fibrous dysplasia of bone in immunocompromised mice by transplanted mosaics of normal and Gs a-mutated skeletal progenitor cells. The Journal of Clinical Investigation 101.8 (1998): 1737–744.Google Scholar

Copyright information

© Humana Press 2010

Authors and Affiliations

  • Joy Jiao
    • 1
    • 2
  • Jack M. Milwid
    • 1
    • 3
  • Martin L. Yarmush
    • 1
    • 3
  • Biju Parekkadan
    • 1
  1. 1.Center for Engineering in Medicine and Surgical ServicesMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Harvard-MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations