Advertisement

Natural and Induced T CD4+CD25+FOXP3+ Regulatory T Cells

  • Lucienne Chatenoud
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 677)

Abstract

Evidence has been accumulated to show that the forkhead/winged-helix transcription factor Foxp3 is a good marker for specialized CD4+ T cells that regulate immune responses to self as well as to a variety of foreign antigens including infectious or tumor antigens, alloantigens, allergens, and commensal antigens. It is now well established that CD4+CD25+Foxp3+ regulatory T cells encompass two categories of lymphocytes that are distinct in their origin, antigen specificity, as well as the stimuli driving their differentiation and homeostasis. Natural CD4+CD25+Foxp3+ regulatory T cells are an independent lineage generated in the thymus through major histocompatibility class II molecules-dependent MHC class high avidity interactions with their T cell receptor. They are specific for self-antigens. Adaptive or induced CD4+CD25+Foxp3+ regulatory T cells stem from mature CD4+CD25-Foxp3-precursors at the periphery following adequate stimulation. They have been shown to develop in vivo following suboptimal antigen stimulation, in situations characterized by chronic inflammation (autoimmunity, allergy, immune responses to tumors and transplants) and also as physiological actors of the mucosal immune system. Although major progress has been accomplished over the last years in our understanding of the central role of CD4+CD25+Foxp3+ regulatory T cells in the control of immune responses, major issues are still elusive. In particular, there are still no reliable phenotypic or functional markers that make it possible to distinguish between natural and induced CD25+Foxp3+ regulatory T cells.

Key words

Natural regulatory T cells Induced regulatory T cells Foxp3 Immune regulation 

References

  1. 1.
    Gershon, R.K., and K. Kondo. 1971. Infec tious immunological tolerance. Immunology 21:903–914.PubMedGoogle Scholar
  2. 2.
    Sakaguchi, S., N. Sakaguchi, M. Asano, M. Itoh, and M. Toda. 1995. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164.PubMedGoogle Scholar
  3. 3.
    Kim, J.M., and A. Rudensky. 2006. The role of the transcription factor Foxp3 in the deve lopment of regulatory T cells. Immunol Rev 212:86–98.PubMedCrossRefGoogle Scholar
  4. 4.
    Fontenot, J.D., J.P. Rasmussen, L.M. Williams, J.L. Dooley, A.G. Farr, and A.Y. Rudensky. 2005. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22:329–341.PubMedCrossRefGoogle Scholar
  5. 5.
    Chen, W., W. Jin, N. Hardegen, K.J. Lei, L. Li, N. Marinos, G. McGrady, and S.M. Wahl. 2003. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886.PubMedCrossRefGoogle Scholar
  6. 6.
    Liang, S., P. Alard, Y. Zhao, S. Parnell, S.L. Clark, and M.M. Kosiewicz. 2005. Conversion of CD4+ CD25- cells into CD4+ CD25+ regulatory T cells in vivo requires B7 costi mulation, but not the thymus. J Exp Med 201:127–137.PubMedCrossRefGoogle Scholar
  7. 7.
    Curotto de Lafaille, M.A., A.C. Lino, N. Kutchukhidze, and J.J. Lafaille. 2004. CD25- T cells generate CD25+Foxp3+ regulatory T cells by peripheral expansion. J Immunol 173:7259–7268.PubMedGoogle Scholar
  8. 8.
    Karim, M., C.I. Kingsley, A.R. Bushell, B.S. Sawitzki, and K.J. Wood. 2004. Alloantigen-induced CD25+CD4+ regulatory T cells can develop in vivo from CD25-CD4+ precursors in a thymus-independent process. J Immunol 172:923–928.PubMedGoogle Scholar
  9. 9.
    Cobbold, S.P., R. Castejon, E. Adams, D. Zelenika, L. Graca, S. Humm, and H. Waldmann. 2004. Induction of foxP3+ regulatory T cells in the periphery of T cell receptor transgenic mice tolerized to transplants. J Immunol 172:6003–6010.PubMedGoogle Scholar
  10. 10.
    Takahashi, T., T. Tagami, S. Yamazaki, T. Uede, J. Shimizu, N. Sakaguchi, T.W. Mak, and S. Sakaguchi. 2000. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192:303–310.PubMedCrossRefGoogle Scholar
  11. 11.
    Shimizu, J., S. Yamazaki, T. Takahashi, Y. Ishida, and S. Sakaguchi. 2002. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3:135–142.PubMedCrossRefGoogle Scholar
  12. 12.
    Read, S., V. Malmstrom, and F. Powrie. 2000. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 192:295–302.PubMedCrossRefGoogle Scholar
  13. 13.
    Tang, Q., and J.A. Bluestone. 2006. Regulatory T-cell physiology and application to treat autoimmunity. Immunol Rev 212:217–237.PubMedCrossRefGoogle Scholar
  14. 14.
    You, S., B. Leforban, C. Garcia, J.F. Bach, J.A. Bluestone, and L. Chatenoud. 2007. Adaptive TGF-{beta}-dependent regulatory T cells control autoimmune diabetes and are a privileged target of anti-CD3 antibody treatment. Proc Natl Acad Sci USA 104:6335–6340.PubMedCrossRefGoogle Scholar
  15. 15.
    Mchugh, R.S., M.J. Whitters, C.A. Piccirillo, D.A. Young, E.M. Shevach, M. Collins, and M.C. Byrne. 2002. CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16:311–323.PubMedCrossRefGoogle Scholar
  16. 16.
    Piccirillo, C.A., J.J. Letterio, A.M. Thornton, R.S. Mchugh, M. Mamura, H. Mizuhara, and E.M. Shevach. 2002. CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J Exp Med 196:237–246.PubMedCrossRefGoogle Scholar
  17. 17.
    You, S., M. Belghith, P. Cobbold, M.A. Alyanakian, C. Gouarin, S. Barriot, C. Garcia, H. Waldmann, L. Chatenoud, and J.F. Bach. 2005. Autoimmune diabetes onset results from qualitative rather than quantitative age-dependent changes in pathogenic T cells. Diabetes 54(5):1415–1422.PubMedCrossRefGoogle Scholar
  18. 18.
    Shevach, E.M., R.A. DiPaolo, J. Andersson, D.M. Zhao, G.L. Stephens, and A.M. Thornton. 2006. The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol Rev 212:60–73.PubMedCrossRefGoogle Scholar
  19. 19.
    Billiard, F., E. Litvinova, D. Saadoun, F. Djelti, D. Klatzmann, J.L. Cohen, G. Marodon, and B.L. Salomon. 2006. Regulatory and effector T cell activation levels are prime determinants of in vivo immune regulation. J Immunol 177:2167–2174.PubMedGoogle Scholar
  20. 20.
    Nishizuka, Y., and T. Sakakura. 1969. Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 166:753–755.PubMedCrossRefGoogle Scholar
  21. 21.
    Sakaguchi, S., K. Fukuma, K. Kuribayashi, and T. Masuda. 1985. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med 161:72–87.PubMedCrossRefGoogle Scholar
  22. 22.
    Asano, M., M. Toda, N. Sakaguchi, and S. Sakaguchi. 1996. Autoimmune disease as a con sequence of developmental abnormality of a T cell subpopulation. J Exp Med 184:387–396.PubMedCrossRefGoogle Scholar
  23. 23.
    Suri-payer, E., A.Z. Amar, A.M. Thornton, and E.M. Shevach. 1998. CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J Immunol 160:1212–1218.PubMedGoogle Scholar
  24. 24.
    Powrie, F., R. Correa-oliveira, S. Mauze, and R.L. Coffman. 1994. Regulatory interactions between CD45R Bhigh and CD45 RBlow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. J Exp Med 179:589–600.PubMedCrossRefGoogle Scholar
  25. 25.
    Stephens, L.A., C. Mottet, D. Mason, and F. Powrie. 2001. Human CD4(+)CD25(+) thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur J Immunol 31:1247–1254.PubMedCrossRefGoogle Scholar
  26. 26.
    Fontenot, J.D., M.A. Gavin, and A.Y. Rudensky. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336.PubMedCrossRefGoogle Scholar
  27. 27.
    Hori, S., T. Nomura, and S. Sakaguchi. 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061.PubMedCrossRefGoogle Scholar
  28. 28.
    Khattri, R., T. Cox, S.A. Yasayko, and F. Ramsdell. 2003. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4:337–342.PubMedCrossRefGoogle Scholar
  29. 29.
    Wildin, R.S., S. Smyk-Pearson, and A.H. Filipovich. 2002. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet 39:537–545.PubMedCrossRefGoogle Scholar
  30. 30.
    Salomon, B., D.J. Lenschow, L. Rhee, N. Ashourian, B. Singh, A. Sharpe, and J.A. Bluestone. 2000. B7/CD28 Costimu lation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12:431–440.PubMedCrossRefGoogle Scholar
  31. 31.
    Seddon, B., and D. Mason. 1999. Peripheral autoantigen induces regulatory T cells that prevent autoimmunity. J Exp Med 189:877–882.PubMedCrossRefGoogle Scholar
  32. 32.
    Jordan, M.S., A. Boesteanu, A.J. Reed, A.L. Petrone, A.E. Holenbeck, M.A. Lerman, A. Naji, and A.J. Caton. 2001. Thymic selection of CD4(+)CD25(+) regulatory T cells induced by an agonist self-peptide. Nat Immunol 2:301–306.PubMedCrossRefGoogle Scholar
  33. 33.
    Knoechel, B., J. Lohr, E. Kahn, J.A. Bluestone, and A.K. Abbas. 2005. Sequential development of interleukin 2-dependent effector and regulatory T cells in response to endo genous systemic antigen. J Exp Med 202:1375–1386.PubMedCrossRefGoogle Scholar
  34. 34.
    Apostolou, I., and H. von Boehmer. 2004. In vivo instruction of suppressor commitment in naive T cells. J Exp Med 199:1401–1408.PubMedCrossRefGoogle Scholar
  35. 35.
    Kretschmer, K., I. Apostolou, D. Hawiger, K. Khazaie, M.C. Nussenzweig, and H. von Boehmer. 2005. Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 6:1219–1227.PubMedCrossRefGoogle Scholar
  36. 36.
    Mucida, D., N. Kutchukhidze, A. Erazo, M. Russo, J.J. Lafaille, and M.A. Curotto de Lafaille. 2005. Oral tolerance in the absence of naturally occurring Tregs. J Clin Invest 115:1923–1933.PubMedCrossRefGoogle Scholar
  37. 37.
    You, S., N. Thieblemont, M.A. Alyanakian, J.F. Bach, and L. Chatenoud. 2006. Trans for ming growth factor-beta and T-cell-mediated immunoregulation in the control of autoimmune diabetes. Immunol Rev 212:185–202.PubMedCrossRefGoogle Scholar
  38. 38.
    Curotto de Lafaille, M.A., N. Kutchukhidze, S. Shen, Y. Ding, H. Yee, and J.J. Lafaille. 2008. Adaptive Foxp3+ regulatory T cell-dependent and -independent control of allergic inflammation. Immunity 29:114–126.PubMedCrossRefGoogle Scholar
  39. 39.
    Liu, V.C., L.Y. Wong, T. Jang, A.H. Shah, I. Park, X. Yang, Q. Zhang, S. Lonning, B.A. Teicher, and C. Lee. 2007. Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta. J Immunol 178:2883–2892.PubMedGoogle Scholar
  40. 40.
    Sun, C.M., J.A. Hall, R.B. Blank, N. Bouladoux, M. Oukka, J.R. Mora, and Y. Belkaid. 2007. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 204:1775–1785.PubMedCrossRefGoogle Scholar
  41. 41.
    Barnes, M.J., and F. Powrie. 2009. Regula tory T cells reinforce intestinal homeostasis. Immunity 31:401–411.PubMedCrossRefGoogle Scholar
  42. 42.
    Josefowicz, S.Z., and A. Rudensky. 2009. Control of regulatory T cell lineage commitment and maintenance. Immunity 30:616–625.PubMedCrossRefGoogle Scholar
  43. 43.
    Ochi, H., M. Abraham, H. Ishikawa, D. Frenkel, K. Yang, A.S. Basso, H. Wu, M.L. Chen, R. Gandhi, A. Miller, R. Maron, and H.L. Weiner. 2006. Oral CD3-specific antibody suppresses autoimmune encephalomyelitis by inducing CD4(+)CD25(-)LAP(+) T cells. Nat Med 12:627–635.PubMedCrossRefGoogle Scholar
  44. 44.
    Chen, M.L., B.S. Yan, Y. Bando, V.K. Kuchroo, and H.L. Weiner. 2008. Latency-associated peptide identifies a novel CD4+CD25+ regulatory T cell subset with TGFbeta-mediated function and enhanced suppression of experimental autoimmune encephalomyelitis. J Immunol 180:7327–7337.PubMedGoogle Scholar
  45. 45.
    Tang, Q., K.J. Henriksen, M. Bi, E.B. Finger, G. Szot, J. Ye, E.L. Masteller, H. McDevitt, M. Bonyhadi, and J.A. Bluestone. 2004. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 199:1455–1465.PubMedCrossRefGoogle Scholar
  46. 46.
    Battaglia, M., A. Stabilini, E. Draghici, B. Migliavacca, S. Gregori, E. Bonifacio, and M.G. Roncarolo. 2006. Induction of tolerance in type 1 diabetes via both CD4+CD25+ T regulatory cells and T regulatory type 1 cells. Diabetes 55:1571–1580.PubMedCrossRefGoogle Scholar
  47. 47.
    Groux, H., A. O’garra, M. Bigler, M. Rouleau, S. Antonenko, J.E. De Vries, and M.G. Roncarolo. 1997. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389:737–742.PubMedCrossRefGoogle Scholar
  48. 48.
    Battaglia, M., S. Gregori, R. Bacchetta, and M.G. Roncarolo. 2006. Tr1 cells: from discovery to their clinical application. Semin Immunol 18:120–127.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2010

Authors and Affiliations

  • Lucienne Chatenoud
    • 1
  1. 1.INSERM U1013, Faculté Paris DescartesHôpital Necker-Enfants MaladesParisFrance

Personalised recommendations