Skip to main content

Identification of Chemical-Adducted Proteins in Urine by Multi-dimensional Protein Identification Technology (LC/LC–MS/MS)

  • Protocol
  • First Online:
Drug Safety Evaluation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 691))

Abstract

Recent technological advancements in mass spectrometry facilitate the detection of chemical-induced posttranslational modifications (PTMs) that may alter cell signaling pathways or alter the structure and function of the modified proteins. To identify such protein adducts (Kleiner et al., Chem Res Toxicol 11:1283–1290, 1998), multi-dimensional protein identification technology (MuDPIT) has been utilized. MuDPIT was first described by Link et al. as a new technique useful for protein identification from a complex mixture of proteins (Link et al., Nat Biotechnol 17:676–682, 1999). MuDPIT utilizes two different HPLC columns to further enhance peptide separation, increasing the number of peptide hits and protein coverage. The technology is extremely useful for proteomes, such as the urine proteome, samples from immunoprecipitations, and 1D gel bands resolved from a tissue homogenate or lysate. In particular, MuDPIT has enhanced the field of adduct hunting for adducted peptides, since it is more capable of identifying lesser abundant peptides, such as those that are adducted, than the more standard LC–MS/MS. The site-specific identification of covalently adducted proteins is a prerequisite for understanding the biological significance of chemical-induced PTMs and the subsequent toxicological response they elicit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asif, A. R., Armstrong, V. W., Voland, A., Wieland, E., Oellerich, M., and Shipkova, M. (2007) Proteins identified as targets of the acyl glucuronide metabolite of mycophenolic acid in kidney tissue from mycophenolate mofetil treated rats, Biochimie 89, 393–402.

    Article  CAS  PubMed  Google Scholar 

  2. Bruschi, S. A., Lindsay, J. G., and Crabb, J. W. (1998) Mitochondrial stress protein recognition of inactivated dehydrogenases during mammalian cell death, Proc Natl Acad Sci U S A 95, 13413–13418.

    Article  CAS  PubMed  Google Scholar 

  3. Kleiner, H. E., Rivera, M. I., Pumford, N. R., Monks, T. J., and Lau, S. S. (1998) Immunochemical detection of quinol–thioether-derived protein adducts, Chem Res Toxicol 11, 1283–1290.

    Article  CAS  PubMed  Google Scholar 

  4. Kleiner, H. E., Jones, T. W., Monks, T. J., and Lau, S. S. (1998) Immunochemical analysis of quinol–thioether-derived covalent protein adducts in rodent species sensitive and resistant to quinol–thioether-mediated nephrotoxicity, Chem Res Toxicol 11, 1291–1300.

    Article  CAS  PubMed  Google Scholar 

  5. Yates, J. R., III, Eng, J. K., McCormack, A. L., and Schieltz, D. (1995) Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database, Anal Chem 67, 1426–1436.

    Article  CAS  PubMed  Google Scholar 

  6. Craig, R., Cortens, J. P., and Beavis, R. C. (2004) Open source system for analyzing, validating, and storing protein identification data, J Proteome Res 3, 1234–1242.

    Article  CAS  PubMed  Google Scholar 

  7. Jorde, L. B. (2005) Encyclopedia of genetics, genomics, proteomics, and bioinformatics, Wiley, Chichester.

    Google Scholar 

  8. Washburn, M. P., Wolters, D., and Yates, J. R., III. (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology, Nat Biotechnol 19, 242–247.

    Article  CAS  PubMed  Google Scholar 

  9. Andon, N. L., Hollingworth, S., Koller, A., Greenland, A. J., Yates, J. R., III, and Haynes, P. A. (2002) Proteomic characterization of wheat amyloplasts using identification of proteins by tandem mass spectrometry, Proteomics 2, 1156–1168.

    Article  CAS  PubMed  Google Scholar 

  10. Lantz, R. C., Lynch, B. J., Boitano, S., Poplin, G. S., Littau, S., Tsaprailis, G., and Burgess, J. L. (2007) Pulmonary biomarkers based on alterations in protein expression after exposure to arsenic, Environ Health Perspect 115, 586–591.

    Article  CAS  PubMed  Google Scholar 

  11. Cooper, B., Eckert, D., Andon, N. L., Yates, J. R., and Haynes, P. A. (2003) Investigative proteomics: identification of an unknown plant virus from infected plants using mass spectrometry, J Am Soc Mass Spectrom 14, 736–741.

    Article  CAS  PubMed  Google Scholar 

  12. Keller, A., Nesvizhskii, A. I., Kolker, E., and Aebersold, R. (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search, Anal Chem 74, 5383–5392.

    Article  CAS  PubMed  Google Scholar 

  13. Nesvizhskii, A. I., Keller, A., Kolker, E., and Aebersold, R. (2003) A statistical model for identifying proteins by tandem mass spectrometry, Anal Chem 75, 4646–4658.

    Article  CAS  PubMed  Google Scholar 

  14. Fisher, A. A., Labenski, M. T., Malladi, S., Gokhale, V., Bowen, M. E., Milleron, R. S., Bratton, S. B., Monks, T. J., and Lau, S. S. (2007) Quinone electrophiles selectively adduct “electrophile binding motifs” within cytochrome c, Biochemistry 46, 11090–11100.

    Article  CAS  PubMed  Google Scholar 

  15. Hansen, B. T., Davey, S. W., Ham, A. J., and Liebler, D. C. (2005) P-Mod: an algorithm and software to map modifications to peptide sequences using tandem MS data, J Proteome Res 4, 358–368.

    Article  CAS  PubMed  Google Scholar 

  16. Standing, K. G. (2003) Peptide and protein de novo sequencing by mass spectrometry, Curr Opin Struct Biol 13, 595–601.

    Article  CAS  PubMed  Google Scholar 

  17. Link, A. J., Eng, J., Schieltz, D. M., Carmack, E., Mize, G. J., Morris, D. R., Garvik, B. M., and Yates, J. R., III. (1999) Direct analysis of protein complexes using mass spectrometry, Nat Biotechnol 17, 676–682.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by GM070890 (SSL) and ES07091 (AAF). The authors acknowledge the support of the P30 ES06694 Southwest Environmental Health Sciences Center, in particular the Arizona Proteomics Consortium (APC). Our special thanks go to Dr. George Tsaprailis, Director of the APC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serrine S. Lau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Labenski, M.T., Fisher, A.A., Monks, T.J., Lau, S.S. (2011). Identification of Chemical-Adducted Proteins in Urine by Multi-dimensional Protein Identification Technology (LC/LC–MS/MS). In: Gautier, JC. (eds) Drug Safety Evaluation. Methods in Molecular Biology, vol 691. Humana Press. https://doi.org/10.1007/978-1-60761-849-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-849-2_21

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-186-8

  • Online ISBN: 978-1-60761-849-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics