Skip to main content

A Microarray-Based Method to Perform Nucleic Acid Selections

  • Protocol
  • First Online:
Small Molecule Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 669))

Abstract

This method describes a microarray-based platform to perform nucleic acid selections. Chemical ligands to which a nucleic acid binder is desired are immobilized onto an agarose microarray surface; the array is then incubated with an RNA library. Bound RNA library members are harvested directly from the array surface via gel excision at the position on the array where a ligand was immobilized. The RNA is then amplified via RT-PCR, cloned, and sequenced. This method has the following advantages over traditional resin-based Systematic Evolution of Ligands by Exponential Enrichment (SELEX): (1) multiple selections can be completed in parallel on a single microarray surface; (2) kinetic biases in the selections are mitigated since all RNA binders are harvested from an array via gel excision; (3) the amount of chemical ligand needed to perform a selection is minimized; (4) selections do not require expensive resins or equipment; and (5) the matrix used for selections is inexpensive and easy to prepare. Although this protocol was demonstrated for RNA selections, it should be applicable for any nucleic acid selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ellington, A. D., and Szostak, J. W. (1990) In vitro selection of RNA molecules that bind specific ligands, Nature 346, 818–822.

    Article  PubMed  CAS  Google Scholar 

  2. Ellington, A. D., and Szostak, J. W. (1992) Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures, Nature 355, 850–852.

    Article  PubMed  CAS  Google Scholar 

  3. Osborne, S. E., and Ellington, A. D. (1997) Nucleic acid selection and the challenge of combinatorial chemistry, Chem. Rev. 97, 349–370.

    Article  PubMed  CAS  Google Scholar 

  4. Tuerk, C., and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science 249, 505–510.

    Article  PubMed  CAS  Google Scholar 

  5. Cox, J. C., and Ellington, A. D. (2001) Automated selection of anti-protein aptamers, Bioorg. Med. Chem. 9, 2525–2531.

    Article  PubMed  CAS  Google Scholar 

  6. Giver, L., Bartel, D. P., Zapp, M. L., Green, M. R., and Ellington, A. D. (1993) Selection and design of high-affinity RNA ligands for HIV-1 REV, Gene 137, 19–24.

    Article  PubMed  CAS  Google Scholar 

  7. Hesselberth, J. R., Miller, D., Robertus, J., and Ellington, A. D. (2000) In vitro selection of RNA molecules that inhibit the activity of ricin A-chain, J. Biol. Chem. 275, 4937–4942.

    Article  PubMed  CAS  Google Scholar 

  8. Daniels, D. A., Chen, H., Hicke, B. J., Swiderek, K. M., and Gold, L. (2003) A tenascin-C aptamer identified by tumor cell SELEX: Systematic evolution of ligands by exponential enrichment, Proc. Natl. Acad. Sci. U.S.A. 100, 15416–15421.

    Article  PubMed  CAS  Google Scholar 

  9. Minunni, M., Scarano, S., and Mascini, M. (2008) Affinity-based biosensors as promising tools for gene doping detection, Trends Biotechnol. 26, 236–243.

    Article  PubMed  CAS  Google Scholar 

  10. Famulok, M., Hartig, J. S., and Mayer, G. (2007) Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy, Chem. Rev. 107, 3715–3743.

    Article  PubMed  CAS  Google Scholar 

  11. Wu, C. C., Sabet, M., Hayashi, T., Tawatao, R., Fierer, J., Carson, D. A., Guiney, D. G., and Corr, M. (2008) In vivo efficacy of a phosphodiester TLR-9 aptamer and its beneficial effect in a pulmonary anthrax infection model, Cell Immunol. 251, 78–85.

    Article  PubMed  CAS  Google Scholar 

  12. Keefe, A. D., and Schaub, R. G. (2008) Aptamers as candidate therapeutics for cardiovascular indications, Curr. Opin. Pharmacol. 8, 147–152.

    Article  PubMed  CAS  Google Scholar 

  13. Lorsch, J. R., and Szostak, J. W. (1994) In vitro evolution of new ribozymes with polynucleotide kinase activity, Nature 371, 31–36.

    Article  PubMed  CAS  Google Scholar 

  14. Bartel, D. P., and Szostak, J. W. (1993) Isolation of new ribozymes from a large pool of random sequences [see comment], Science 261, 1411–1418.

    Article  PubMed  CAS  Google Scholar 

  15. Mendonsa, S. D., and Bowser, M. T. (2004) In vitro evolution of functional DNA using capillary electrophoresis, J. Am. Chem. Soc. 126, 20–21.

    Article  PubMed  CAS  Google Scholar 

  16. Klug, S. J., and Famulok, M. (1994) All you wanted to know about SELEX, Mol. Biol. Rep. 20, 97–107.

    Article  PubMed  CAS  Google Scholar 

  17. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science 270, 467–470.

    Article  PubMed  CAS  Google Scholar 

  18. MacBeath, G., and Schreiber, S. L. (2000) Printing proteins as microarrays for high-throughput function determination, Science 289, 1760–1763.

    PubMed  CAS  Google Scholar 

  19. Houseman, B. T., and Mrksich, M. (2002) Carbohydrate arrays for the evaluation of protein binding and enzymatic modification, Chem. Biol. 9, 400–401.

    Article  Google Scholar 

  20. Barrett, O. J., Childs, J. L., and Disney, M. D. (2006) Chemical microarrays to identify ligands that bind pathogenic cells, Chembiochem 7, 1882–1885.

    Article  PubMed  CAS  Google Scholar 

  21. Disney, M. D., Magnet, S., Blanchard, J. S., and Seeberger, P. H. (2004) Aminoglycoside microarrays to study antibiotic resistance, Angew. Chem. Int. Ed. 43, 1591–1594.

    Article  CAS  Google Scholar 

  22. Bradner, J. E., McPherson, O. M., and Koehler, A. N. (2006) A method for the covalent capture and screening of diverse small molecules in a microarray format, Nat. Prot. 1, 2344–2352.

    Article  CAS  Google Scholar 

  23. Duffner, J. L., Clemons, P. A., and Koehler, A. N. (2007) A pipeline for ligand discovery using small-molecule microarrays, Curr. Opin. Chem. Biol. 11, 74–82.

    Article  PubMed  CAS  Google Scholar 

  24. MacBeath, G., Koehler, A. N., and Schreiber, S. L. (1999) Printing small molecules as microarrays and detecting protein-ligand interactions en masse, J. Am. Chem. Soc. 121, 7967–7968.

    Article  CAS  Google Scholar 

  25. Afanassiev, V., Hannemann, V., and Wolfl, S. (2000) Preparation of DNA and protein micro arrays on glass slides coated with an agarose film, Nucleic Acids Res. 28, E66.

    Article  PubMed  CAS  Google Scholar 

  26. Dufva, M., Petronis, S., Jensen, L. B., Krag, C., and Christensen, C. B. (2004) Characterization of an inexpensive, nontoxic, and highly sensitive microarray substrate. Biotechniques 37, 286–292, 294, 296.

    PubMed  CAS  Google Scholar 

  27. Childs-Disney, J. L., Wu, M., Pushechnikov, A., Aminova, O., and Disney, M. D. (2007) A small molecule microarray platform to select RNA internal loop-ligand interactions, ACS Chem. Biol. 2, 745–754.

    Article  PubMed  CAS  Google Scholar 

  28. Disney, M. D., Labuda, L. P., Paul, D. J., Poplawski, S. G., Pushechnikov, A., Tran, T., Velagapudi, S. P., Wu, M., and Childs-Disney, J. L. (2008) Two-dimensional combinatorial screening identifies specific aminoglycoside-RNA internal loop partners, J. Am. Chem. Soc. 130, 11185–11194.

    Article  PubMed  CAS  Google Scholar 

  29. Chan, T. R., Hilgraf, R., Sharpless, B., and Fokin, V. V. (2004) Polytriazoles as copper(I)-stabilizing ligand in catalysis, Org. Lett. 6, 2853–2855.

    Article  PubMed  CAS  Google Scholar 

  30. Kolb, H. C., Finn, M. G., and Sharpless, K. B. (2001) Click chemistry: diverse chemical function from a few good reactions, Angew. Chem. Int. Ed. 40, 2004–2021.

    Article  CAS  Google Scholar 

  31. Milligan, J. F., and Uhlenbeck, O. C. (1989) Synthesis of small RNAs using T7 RNA polymerase, Methods Enzymol. 180, 51–62.

    Article  PubMed  CAS  Google Scholar 

  32. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning, Vol. 1, Cold Spring Harbor, NY.

    Google Scholar 

  33. Peyret, N., Seneviratne, P. A., Allawi, H. T., and SantaLucia Jr, J. (1999) Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A-A, C-C, G-G, and T-T mismatches, Biochemistry 38, 3468–3477.

    Article  PubMed  CAS  Google Scholar 

  34. SantaLucia Jr, J. (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics, Proc. Natl. Acad. Sci. U.S.A. 95, 1460–1465.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Jessica Disney for careful proofreading of the manuscript. This work was supported by funding from the University at Buffalo, the NYS Center of Excellence and Bioinformatics and Life Sciences, a New Investigator Award from the Camille and Henry Dreyfus Foundation, a Cottrell Scholar Award from the Research Corporation, a NYSTAR J. D. Watson Young Investigator Award, and the National Institutes of Health (GM079235).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Aminova, O., Disney, M.D. (2010). A Microarray-Based Method to Perform Nucleic Acid Selections. In: Uttamchandani, M., Yao, S. (eds) Small Molecule Microarrays. Methods in Molecular Biology, vol 669. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-845-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-845-4_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-844-7

  • Online ISBN: 978-1-60761-845-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics