Skip to main content

Classification of Chemical Reactions and Chemoinformatic Processing of Enzymatic Transformations

  • Protocol
  • First Online:
Chemoinformatics and Computational Chemical Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 672))

Abstract

The automatic perception of chemical similarities between chemical reactions is required for a variety of applications in chemistry and connected fields, namely with databases of metabolic reactions. Classification of enzymatic reactions is required, e.g., for genome-scale reconstruction (or comparison) of metabolic pathways, computer-aided validation of classification systems, or comparison of enzymatic mechanisms. This chapter presents different current approaches for the representation of chemical reactions enabling automatic reaction classification. Representations based on the encoding of the reaction center are illustrated, which use physicochemical features, Reaction Classification (RC) numbers, or Condensed Reaction Graphs (CRG). Representation of differences between the structures of products and reactants include reaction signatures, fingerprint differences, and the MOLMAP approach. The approaches are illustrated with applications to real datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, L. (2003) Reaction classification and knowledge acquisition, In Handbook of chemoinformatics: from data to knowledge. Gasteiger, J. and Engel, T. (Eds.). Wiley-VCH, New York, Vol. 1, pp 348–388.

    Chapter  Google Scholar 

  2. Goto, S., Nishioka, T., and Kanehisa, M. (1998) LIGAND: chemical database for enzyme reactions. Bioinformatics 14, 591–599.

    Article  PubMed  CAS  Google Scholar 

  3. Kanehisa, M., and Goto, S. (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30.

    Article  PubMed  CAS  Google Scholar 

  4. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., and Hattori, M. (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res. 32, D277-D280.

    Article  PubMed  CAS  Google Scholar 

  5. Kanehisa, M. (1997) A database for post-genome analysis. Trends Genet. 13, 375–376.

    Article  PubMed  CAS  Google Scholar 

  6. Caspi, R., Foerster, H., Fulcher, C. A., Kaipa,P., Krummenacker, M., Latendresse, M., Paley, S., Rhee, S. Y., Shearer, A. G., Tissier, C., Walk, T. C., Zhang, P., and Karp, P. D. (2008) The MetaCyc Database of metabolic pathways and enzymes and the BioCyc ollection of Pathway/Genome Databases. Nucleic Acids Res. 36, D623-D631.

    Article  PubMed  CAS  Google Scholar 

  7. Matthews, L., Gopinath, G., Gillespie, M., Caudy, M., Croft, D., de Bono, B., Garapati, P., Hemish, J., Hermjakob, H., Jassal, B., Kanapin, A., Lewis, S., Mahajan, S., May, B., Schmidt, E., Vastrik, I., Wu, G., Birney, E., Stein, L., and D’Eustachio, P. (2009) Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res. 37, D619-D622.

    Article  PubMed  CAS  Google Scholar 

  8. Körner, R. and Apostolakis, J. (2008) Automatic determination of reaction mappings and reaction center information. 1. The imaginary transition state energy approach. J. Chem. Inf. Model. 48, 1181–1189.

    Article  PubMed  Google Scholar 

  9. Apostolakis, J., Sacher, O., Körner, R., and Gasteiger, J. (2008) Automatic determination of reaction mappings and reaction center information. 2. Validation on a biochemical reaction database. J. Chem. Inf. Model. 48, 1190–1198.

    Article  PubMed  CAS  Google Scholar 

  10. Kotera, M., Okuno, Y., Hattori, M., Goto, S., and Kanehisa, M. (2004) Computational assignement of the EC numbers for genomic-scale analysis of enzymatic reactions. J. Am. Chem. Soc. 126, 16487–16498.

    Article  PubMed  CAS  Google Scholar 

  11. O’Boyle, N. M., Holliday, G. L., Almonacid, D. E., and Mitchell, J. B. O. (2007) Using reaction mechanism to measure enzyme similarity. J. Mol. Biol. 368, 1484–1499.

    Article  PubMed  Google Scholar 

  12. Babbitt, P. C. and Gerlt, J. A. (1997). Understanding enzyme superfamilies. Chemistry as the fundamental determinant in the evolution of new catalytic activities. J. Biol. Chem. 272, 30591–30594.

    Article  PubMed  CAS  Google Scholar 

  13. Todd, A. E., Orengo, C. A., and Thornton, J. M. (2001). Evolution of function in protein superfamilies, from a structural perspective. J. Mol. Biol. 307, 1113–1143.

    Article  PubMed  CAS  Google Scholar 

  14. Bartlett, G. J., Borkakoti, N., and Thornton, J. M. (2003). Catalysing new reactions during evolution: economy of residues and mechanism. J. Mol. Biol. 331, 829–860.

    Article  PubMed  CAS  Google Scholar 

  15. Holliday, G. L., Bartlett, G. J., Almonacid, D. E., O’Boyle, N. M., Murray-Rust, P., Thornton, J. M., and Mitchell, J. B. O. (2005). MACiE: a database of enzyme reaction mechanisms. Bioinformatics 21, 4315–4316.

    Article  PubMed  CAS  Google Scholar 

  16. Varnek, A., Fourches, D., Hoonakker, F., and Solov’ev, V. P. (2005) Substructural fragments: an universal language to encode reactions, molecular and supramolecular structures. J. Comput.-Aided Mol. Des. 19, 693–703.

    Article  PubMed  CAS  Google Scholar 

  17. Fujita, S. (1986) Description of organic reactions based on imaginary transition structures. 1. Introduction of new concepts. J. Chem. Inf. Comput. Sci. 26, 205–212.

    Article  CAS  Google Scholar 

  18. Rose, J. R. and Gasteiger, J. (1994) HORACE: an automatic system for the hierarchical classification of chemical reactions. J. Chem. Inf. Comput. Sci. 34, 74–90.

    Article  CAS  Google Scholar 

  19. Gasteiger, J. and Marsili, M. (1980) Iterative partial equalization of orbital electronegativity – A rapid access to atomic charges. Tetrahedron 36, 3219–3228.

    Article  CAS  Google Scholar 

  20. Chen, L. and Gasteiger, J. (1997) Knowledge discovery in reaction databases: landscaping organic reactions by a self-organizing neural network. J. Am. Chem. Soc. 119, 4033–4042.

    Article  CAS  Google Scholar 

  21. Satoh, H., Sacher, O., Nakata, T., Chen, L., Gasteiger, J., and Funatsu, K. (1998) Classification of organic reactions: similarity of reactions based on changes in the electronic features of oxygen atoms at the reaction sites. J. Chem. Inf. Comput. Sci. 38, 210–219.

    Article  CAS  Google Scholar 

  22. Sacher, O., Reitz, M., and Gasteiger, J. (2009) Investigations of enzyme-catalyzed reactions based on physicochemical descriptors applied to hydrolases. J. Chem. Inf. Model. 49, 1525–1534.

    Article  PubMed  CAS  Google Scholar 

  23. Sacher, O. (2001) Classification of Organic Reactions by Neural Networks for the Application in Reaction Prediction and Synthesis Design. Ph.D. Thesis, University of Erlangen-Nuremberg, Erlangen, Germany, http://www2.chemie.uni-erlangen.de/services/dissonline/data/dissertation/Oliver_Sacher/html/ (accessed September 2009).

  24. In 2000 the Theilheimer database was developed by MDL Information Systems, Inc., San Leandro, CA, USA.

    Google Scholar 

  25. Daylight (2008) Daylight Theory Manual, Daylight version 4.9, release date 02/01/08, Daylight Chemical Information Systems, Inc., http://www.daylight.com/dayhtml/doc/theory (accessed September 2009).

  26. Ridder, L. and Wagener, M. (2008) SyGMa: combining expert knowledge and empirical scoring in the prediction of metabolites. ChemMedChem 3, 821–832.

    Article  PubMed  CAS  Google Scholar 

  27. Faulon, J.-L., Visco, D. P., and Pophale, R. S. (2003) The signature molecular descriptor. 1. Using extended valence sequences in QSAR and QSPR studies. J. Chem. Inf. Comput. Sci. 43, 707–720.

    Article  PubMed  CAS  Google Scholar 

  28. Faulon, J.-L., Misra, M., Martin, S., Sale, K., and Sapra, R. (2008) Genome scale enzyme-metabolite and drug-target interaction predictions using the signature molecular descriptor. Bioinformatics 24, 225–233.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang, Q.-Y. and Aires-de-Sousa, J. (2005) Structure-based classification of chemical reactions without assignment of reaction centers. J. Chem. Inf. Model. 45, 1775–1783.

    Article  PubMed  CAS  Google Scholar 

  30. Gupta, S., Matthew, S., Abreu, P. M., and Aires-de-Sousa, J. (2006) QSAR analysis of phenolic antioxidants using MOLMAP descriptors of local properties. Bioorg. Med. Chem. 14, 1199–1206.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang, Q.-Y. and Aires-de-Sousa, J. (2007) Random forest prediction of mutagenicity from empirical physicochemical descriptors. J. Chem. Inf. Model. 47, 1–8.

    Article  PubMed  Google Scholar 

  32. Carrera, G., Gupta, S., and Aires-de-Sousa, J. (2009) Machine learning of chemical reactivity from databases of organic reactions. J. Comput. Aided Mol. Des. 23, 419–429.

    Article  PubMed  CAS  Google Scholar 

  33. Latino, D. A. R. S. and Aires-de-Sousa, J. (2006) Genome-scale classification of metabolic reactions: a chemoinformatics approach. Angew. Chem. Int. Ed. 45, 2066–2069.

    Article  CAS  Google Scholar 

  34. Latino, D. A. R. S., Zhang, Q.-Y., and Aires-de-Sousa, J. (2008) Genome-scale classification of metabolic reactions and assignment of EC numbers with self-organizing maps. Bioinformatics 24, 2236–2244.

    Article  PubMed  CAS  Google Scholar 

  35. Latino, D. A. R. S. and Aires-de-Sousa, J. (2009) Assignment of EC numbers to enzymatic reactions with MOLMAP reaction descriptors and random forests. J. Chem. Inf. Model. 49, 1839–1846.

    Article  PubMed  CAS  Google Scholar 

  36. ChemAxon Kft., Budapest, Hungary, www.chemaxon.com Details about PETRA software are available from http://www2.chemie.uni-erlangen.de/software/petra (accessed September 2009).

  37. PETRA is developed by Molecular Networks GmbH (Erlangen, Germany, http://www.mol-net.de).

  38. http://www.chem.qmul.ac.uk/iubmb/enzyme/EC4/2/99/16.html accessed October 2009.

Download references

Acknowledgments

Diogo A. R. S. Latino acknowledges Fundação para a Ciência e Tecnologia (Ministério da Ciência, Tecnologia e Ensino Superior, Lisbon, Portugal) for financial support under Ph.D. grant SFRH/BD/18347.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Latino, D.A.R.S., Aires-de-Sousa, J. (2011). Classification of Chemical Reactions and Chemoinformatic Processing of Enzymatic Transformations. In: Bajorath, J. (eds) Chemoinformatics and Computational Chemical Biology. Methods in Molecular Biology, vol 672. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-839-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-839-3_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-838-6

  • Online ISBN: 978-1-60761-839-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics