Advertisement

The Comet-FISH Assay for the Analysis of DNA Damage and Repair

  • Graciela SpivakEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 659)

Abstract

In this chapter, I describe the alkaline single-cell gel electrophoresis (Comet assay) combined with fluorescence in situ hybridization (FISH) technology, used in our laboratory, to study the incidence and repair of lesions induced in human cells by ultraviolet light. The Comet-FISH method permits the simultaneous and comparative analysis of DNA damage and its repair throughout the genome and in defined chromosomal regions. This very sensitive approach can be applied to any lesion, such as those induced by chemical carcinogens and products of cellular metabolism that can be converted to DNA single- or double-strand breaks. The unique advantages and limitations of the method for particular applications are discussed.

Key words

DNA damage DNA repair Transcription-coupled repair Comet FISH Fluorescence Ultraviolet Cyclobutane pyrimidine dimers Single-cell gel electrophoresis Human fibroblasts 

Notes

Acknowledgments

The author would like to thank Alexia Chollat-Namy and Rachel A. Cox for their patience and perseverance in developing the assay, and Phil Hanawalt for believing in the project. This work was supported by a grant CA91456 from NIH.

References

  1. 1.
    Mellon, I. (2005) Transcription-coupled repair: a complex affair. Mutat. Res. 4, 155–161.Google Scholar
  2. 2.
    Tornaletti, S., Reines, D., and Hanawalt, P. C. (1999) Structural characterization of RNA polymerase II complexes arrested by a cyclobutane pyrimidine dimer in the transcribed strand of template DNA. J. Biol. Chem. 274, 24124–24130.PubMedCrossRefGoogle Scholar
  3. 3.
    Scicchitano, D. A., Olesnicky, E. C., and Dimitri, A. (2004) Transcription and DNA adducts: what happens when the message gets cut off? DNA Repair 3, 1537–1548.PubMedCrossRefGoogle Scholar
  4. 4.
    Christians, F. C., and Hanawalt, P. C. (1992) Inhibition of transcription and strand-specific DNA repair by alpha-amanitin in Chinese hamster ovary cells. Mutat. Res. 274, 93–101.PubMedCrossRefGoogle Scholar
  5. 5.
    Spivak, G., and Hanawalt, P. C. (2006) Host cell reactivation of plasmids containing oxidative DNA lesions is defective in Cockayne syndrome but normal in UV-sensitive syndrome fibroblasts. DNA Repair 5, 13–22.PubMedCrossRefGoogle Scholar
  6. 6.
    Friedberg, E., Walker, G., Siede, W., Wood, R., Schultz, R., and Ellenberger, T. (2006) A brief history of the DNA repair field. DNA Repair and Mutagenesis, ASM Press, Washington DC.Google Scholar
  7. 7.
    Spivak, G., Pfeifer, G. P., and Hanawalt, P. C. (2006) In vivo assays for transcription-coupled repair, in Methods Enzymol.: DNA Repair (Campbell, J. C., and Modrich, P., Eds.), Vol. 408, pp. 223–246, Elsevier Inc., New York.Google Scholar
  8. 8.
    Kumaravel, T. S., and Bristow, R. G. (2005) Detection of genetic instability at HER-2/neu and p53 loci in breast cancer cells sing Comet-FISH. Breast Cancer Res. Treat. 91, 89–93.PubMedCrossRefGoogle Scholar
  9. 9.
    Escobar, P. A., Olivero, O. A., Wade, N. A., Abrams, E. J., Nesel, C. J., Ness, R. B., Day, R. D., Day, B. W., Meng, Q., O’Neill, J. P., Walker, D. M., Poirier, M. C., Walker, V. E., and Bigbee, W. L. (2007) Genotoxicity assessed by the comet and GPA assays following in vitro exposure of human lymphoblastoid cells (H9) or perinatal exposure of mother–child pairs to AZT or AZT-3TC. Environ. Mol. Mutagen. 48, 330–343.PubMedCrossRefGoogle Scholar
  10. 10.
    Glei, M., Schaeferhenrich, A., Claussen, U., Kuechler, A., Liehr, T., Weise, A., Marian, B., Sendt, W., and Pool-Zobel, B. L. (2007) Comet fluorescence in situ hybridization analysis for oxidative stress-induced DNA damage in colon cancer relevant genes. Toxicol. Sci. 96, 279–284.PubMedCrossRefGoogle Scholar
  11. 11.
    McKay, B. C., Chen, F., Clarke, S. T., Wiggin, H. E., Harley, L. M., and Ljungman, M. (2001) UV light-induced degradation of RNA polymerase II is dependent on the Cockayne’s syndrome A and B proteins but not p53 or MLH1. Mutat. Res. 485, 93–105.PubMedCrossRefGoogle Scholar
  12. 12.
    Spivak, G., Cox, R. A., and Hanawalt, P. C. (2009) New applications of the Comet assay: Comet-FISH and transcription-coupled DNA repair. Mutat. Res. 681, 44–50.PubMedCrossRefGoogle Scholar
  13. 13.
    Olive, P. L., and Banath, J. P. (2006) The comet assay: a method to measure DNA damage in individual cells. Nat. Protoc. 1, 23–29.PubMedCrossRefGoogle Scholar
  14. 14.
    Collins, A. R., Dobson, V. L., Dusinska, M., Kennedy, G., and Sttina, R. (1997) The comet assay: what can it really tell us? Mutat. Res. 375, 183–193.PubMedCrossRefGoogle Scholar
  15. 15.
    McKenna, D. J., Gallus, M., McKeown, S. R., Downes, C. S., and McKelvey-Martin, V. J. (2003) Modification of the alkaline Comet assay to allow simultaneous evaluation of mitomycin C-induced DNA cross-link damage and repair of specific DNA sequences in RT4 cells. DNA Repair 2, 879–890.PubMedCrossRefGoogle Scholar
  16. 16.
    Dhawan, A., Bajpayee, M., and Parmar, D. (2009) Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biol. Toxicol. 25, 5–32.PubMedCrossRefGoogle Scholar
  17. 17.
    Rapp, A., Hausmann, M., and Greulich, K. O. (2005) The Comet-FISH technique: a tool for detection of specific DNA damage and repair. Methods Mol. Biol. 291, 107–119.PubMedGoogle Scholar
  18. 18.
    Menke, M., Angelis, K. J., and Schubert, I. (2000) Detection of specific DNA lesions by a combination of comet assay and FISH in plants. Environ. Mol. Mutagen. 35, 132–138.PubMedCrossRefGoogle Scholar
  19. 19.
    Amendola, R., Basso, E., Pacifici, P. G., Piras, E., Giovanetti, A., Volpato, C., and Romeo, G. (2006) Ret, Abl1 (cAbl) and Trp53 gene fragmentations in comet-FISH assay act as in vivo biomarkers of radiation exposure in C57BL/6 and CBA/J mice. Radiat. Res. 165, 553–561.PubMedCrossRefGoogle Scholar
  20. 20.
    Horvâthovâ, E., Dusinskâ, M., Shaposhnikov, S., and Collins, A. R. (2004) DNA damage and repair measured in different genomic regions using the comet assay with fluorescent in situ hybridization. Mutagenesis 19, 269–276.PubMedCrossRefGoogle Scholar
  21. 21.
    Nouspikel, T. P., Hyka-Nouspikel, N., and Hanawalt, P. C. (2006) Transcription domain-associated repair in human cells. Mol. Cell. Biol. 26, 8722–8730.PubMedCrossRefGoogle Scholar
  22. 22.
    Duez, P., Dehon, G., Kumps, A., and Dubois, J. (2003) Statistics of the Comet assay: a key to discriminate between genotoxic effects. Mutagenesis 18, 159–166.PubMedCrossRefGoogle Scholar
  23. 23.
    Ejchart, A., and Sadlej-Sosnowska, N. (2003) Statistical evaluation and comparison of comet assay results. Mutat. Res. 534, 85–92.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of BiologyStanford UniversityStanfordUSA

Personalised recommendations