Advertisement

Fluorescence in situ Hybridization (FISH) for Genomic Investigations in Rat

  • Andrew Jefferson
  • Emanuela V. VolpiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 659)

Abstract

This chapter concentrates on the use of fluorescence in situ hybridization (FISH) for genomic investigations in the laboratory rat (Rattus norvegicus). The selection of protocols included in the chapter has been inspired by a comprehensive range of previously published molecular cytogenetic studies on this model organism, reporting examples of how FISH can be applied for diverse investigative purposes, varying from comparative gene mapping to studies of chromosome structure and genome evolution, to characterization of chromosomes aberrations as well as transgenic insertions. The protocols, which include techniques for the preparation of mitotic chromosomes and DNA fibers from short-term cell cultures, have been gathered through the years and repeatedly tested in our laboratory, and all together aim at providing sufficient experimental versatility to cover a broad range of cytogenetic and cytogenomic applications.

Key words

Fluorescence in situ hybridization FISH ZOO-FISH Molecular cytogenetics Chromosomes Rat 

References

  1. 1.
    Lawrence, J. B., Singer, R. H., and McNeil, J. A. (1990) Interphase and metaphase resolution of different distances within the human dystrophin gene, Science 249, 928–932.PubMedCrossRefGoogle Scholar
  2. 2.
    Trask, B. J., Massa, H., Kenwrick, S., and Gitschier, J. (1991) Mapping of human chromosome Xq28 by two-color fluorescence in situ hybridization of DNA sequences to interphase cell nuclei, Am J Hum Genet 48, 1–15.PubMedGoogle Scholar
  3. 3.
    van den Engh, G., Sachs, R., and Trask, B. J. (1992) Estimating genomic distance from DNA sequence location in cell nuclei by a random walk model, Science 257, 1410–1412.PubMedCrossRefGoogle Scholar
  4. 4.
    Weier, H. U. (2001) DNA fiber mapping techniques for the assembly of high-resolution physical maps, J Histochem Cytochem 49, 939–948.PubMedCrossRefGoogle Scholar
  5. 5.
    Collins, F. S. (1995) Positional cloning moves from perditional to traditional, Nat Genet 9, 347–350.PubMedCrossRefGoogle Scholar
  6. 6.
    Speicher, M. R., and Carter, N. P. (2005) The new cytogenetics: blurring the boundaries with molecular biology, Nat Rev Genet 6, 782–792.PubMedCrossRefGoogle Scholar
  7. 7.
    Volpi, E. V., and Bridger, J. M. (2008) FISH glossary: an overview of the fluorescence in situ hybridization technique, Biotechniques 45, 385–386, 388, 390 passim.PubMedCrossRefGoogle Scholar
  8. 8.
    Kulnane, L. S., Lehman, E. J., Hock, B. J., Tsuchiya, K. D., and Lamb, B. T. (2002) Rapid and efficient detection of transgene homozygosity by FISH of mouse fibroblasts, Mamm Genome 13, 223–226.PubMedCrossRefGoogle Scholar
  9. 9.
    Matsui, S., Sait, S., Jones, C. A., Nowak, N., and Gross, K. W. (2002) Rapid localization of transgenes in mouse chromosomes with a combined Spectral Karyotyping/FISH technique, Mamm Genome 13, 680–685.PubMedCrossRefGoogle Scholar
  10. 10.
    Nakanishi, T., Kuroiwa, A., Yamada, S., Isotani, A., Yamashita, A., Tairaka, A., Hayashi, T., Takagi, T., Ikawa, M., Matsuda, Y., and Okabe, M. (2002) FISH analysis of 142 EGFP transgene integration sites into the mouse genome, Genomics 80, 564–574.PubMedCrossRefGoogle Scholar
  11. 11.
    Cronkhite, J. T., Norlander, C., Furth, J. K., Levan, G., Garbers, D. L., and Hammer, R. E. (2005) Male and female germline specific expression of an EGFP reporter gene in a unique strain of transgenic rats, Dev Biol 284, 171–183.PubMedCrossRefGoogle Scholar
  12. 12.
    Goto, K., Yasuda, M., Sugawara, A., Kuramochi, T., Itoh, T., Azuma, N., and Ito, M. (2006) Small eye phenotypes observed in a human tau gene transgenic rat, Curr Eye Res 31, 107–110.PubMedCrossRefGoogle Scholar
  13. 13.
    Liska, F., Levan, G., Helou, K., Sladka, M., Pravenec, M., Zidek, V., Landa, V., and Kren, V. (2002) Chromosome assignment of Cd36 transgenes in two rat SHR lines by FISH and linkage mapping of transgenic insert in the SHR-TG19 line, Folia Biol (Praha) 48, 139–144.Google Scholar
  14. 14.
    Hamta, A., Adamovic, T., Samuelson, E., Helou, K., Behboudi, A., and Levan, G. (2006) Chromosome ideograms of the laboratory rat (Rattus norvegicus) based on high-resolution banding, and anchoring of the cytogenetic map to the DNA sequence by FISH in sample chromosomes, Cytogenet Genome Res 115, 158–168.PubMedCrossRefGoogle Scholar
  15. 15.
    Gomez-Fabre, P. M., Helou, K., and Stahl, F. (2002) Predictions based on the rat-mouse comparative map provide mapping information on over 6000 new rat genes, Mamm Genome 13, 189–193.PubMedCrossRefGoogle Scholar
  16. 16.
    Helou, K., Wallenius, V., Qiu, Y., Ohman, F., Stahl, F., Klinga-Levan, K., Kindblom, L. G., Mandahl, N., Jansson, J. O., and Levan, G. (1999) Amplification and overexpression of the hepatocyte growth factor receptor (HGFR/MET) in rat DMBA sarcomas, Oncogene 18, 3226–3234.PubMedCrossRefGoogle Scholar
  17. 17.
    Zullo, S., and Upender, M. (1995) Rat karyotyping by fluorescence in situ hybridization (FISH): localization of oncogene c-raf to 4q42, retinoblastoma antioncogene to 15q12, and mitochondrial D-loop-like sequences to the Y chromosome, Genomics 25, 753–756.PubMedCrossRefGoogle Scholar
  18. 18.
    Essers, J., de Stoppelaar, J. M., and Hoebee, B. (1995) A new rat repetitive DNA family shows preferential localization on chromosome 3, 12 and Y after fluorescence in situ hybridization and contains a subfamily which is Y chromosome specific, Cytogenet Cell Genet 69, 246–252.PubMedCrossRefGoogle Scholar
  19. 19.
    Helou, K., Walentinsson, A., Levan, G., and Stahl, F. (2001) Between rat and mouse zoo-FISH reveals 49 chromosomal segments that have been conserved in evolution, Mamm Genome 12, 765–771.PubMedGoogle Scholar
  20. 20.
    McFadyen, D. A., and Locke, J. (2000) High-resolution FISH mapping of the rat alpha2u-globulin multigene family, Mamm Genome 11, 292–299.PubMedCrossRefGoogle Scholar
  21. 21.
    de Stoppelaar, J. M., Faessen, P., Zwart, E., Hozeman, L., Hodemaekers, H., Mohn, G. R., and Hoebee, B. (2000) Isolation of DNA probes specific for rat chromosomal regions 19p, 19q and 4q and their application for the analysis of diethylstilbestrol-induced aneuploidy in binucleated rat fibroblasts, Mutagenesis 15, 165–175.PubMedCrossRefGoogle Scholar
  22. 22.
    Adamovic, T., Trosso, F., Roshani, L., Andersson, L., Petersen, G., Rajaei, S., Helou, K., and Levan, G. (2005) Oncogene amplification in the proximal part of chromosome 6 in rat endometrial adenocarcinoma as revealed by combined BAC/PAC FISH, chromosome painting, zoo-FISH, and allelotyping, Genes Chromosomes Cancer 44, 139–153.PubMedCrossRefGoogle Scholar
  23. 23.
    Helou, K., Walentinsson, A., Kost-Alimova, M., and Levan, G. (2001) Hgfr/Met oncogene acts as target for gene amplification in DMBA-induced rat sarcomas: free chromatin fluorescence in situ hybridization analysis of amplicon arrays in homogeneously staining regions, Genes Chromosomes Cancer 30, 416–420.PubMedCrossRefGoogle Scholar
  24. 24.
    Nordlander, C., Karlsson, S., Karlsson, A., Sjoling, A., Winnes, M., Klinga-Levan, K., and Behboudi, A. (2007) Analysis of chromosome 10 aberrations in rat endometrial cancer-evidence for a tumor suppressor locus distal to Tp53, Int J Cancer 120, 1472–1481.PubMedCrossRefGoogle Scholar
  25. 25.
    Samuelson, E., Nordlander, C., Levan, G., and Behboudi, A. (2008) Amplification studies of MET and Cdk6 in a rat endometrial tumor model and their correlation to human type I endometrial carcinoma tumors, Adv Exp Med Biol 617, 511–517.PubMedCrossRefGoogle Scholar
  26. 26.
    Buwe, A., Steinlein, C., Koehler, M. R., Bar-Am, I., Katzin, N., and Schmid, M. (2003) Multicolor spectral karyotyping of rat chromosomes. Cytogenet Genome Res 103, 163–168.PubMedCrossRefGoogle Scholar
  27. 27.
    Dugan, L. C., Pattee, M. S., Williams, J., Eklund, M., Sorensen, K., Bedford, J. S., and Christian, A. T. (2005) Polymerase chain reaction-based suppression of repetitive sequences in whole chromosome painting probes for FISH, Chromosome Res 13, 27–32PubMedCrossRefGoogle Scholar
  28. 28.
    Hoebee, B., and de Stoppelaar, J. M. (1996) The isolation of rat chromosome probes and their application in cytogenetic tests, Mutat Res 372, 205–210.PubMedCrossRefGoogle Scholar
  29. 29.
    Schrock, E., Zschieschang, P., O’Brien, P., Helmrich, A., Hardt, T., Matthaei, A., and Stout-Weider, K. (2006) Spectral karyotyping of human, mouse, rat and ape chromosomes – applications for genetic diagnostics and research, Cytogenet Genome Res 114, 199–221.PubMedCrossRefGoogle Scholar
  30. 30.
    Scherthan, H., Cremer, T., Arnason, U., Weier, H. U., Lima-de-Faria, A., and Fronicke, L. (1994) Comparative chromosome painting discloses homologous segments in distantly related mammals, Nat Genet 6, 342–347.PubMedCrossRefGoogle Scholar
  31. 31.
    Grutzner, F., Himmelbauer, H., Paulsen, M., Ropers, H. H., and Haaf, T. (1999) Comparative mapping of mouse and rat chromosomes by fluorescence in situ hybridization, Genomics 55, 306–313.PubMedCrossRefGoogle Scholar
  32. 32.
    Guilly, M. N., Fouchet, P., de Chamisso, P., Schmitz, A., and Dutrillaux, B. (1999) Comparative karyotype of rat and mouse using bidirectional chromosome painting, Chromosome Res 7, 213–221.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Cardiovascular MedicineJohn Radcliffe HospitalOxfordUK
  2. 2.Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK

Personalised recommendations