FISH as a Tool to Investigate Chromosome Behavior in Budding Yeast

  • Harry ScherthanEmail author
  • Josef Loidl
Part of the Methods in Molecular Biology book series (MIMB, volume 659)


Fluorescence in situ hybridization (FISH) provides an effective means to delineate chromosomes and their subregions during all stages of the cell cycle. This makes FISH particularly useful for studying chromosome behavior in species with minute genomes and/or poor chromosome condensation at metaphase, which is the case in model organisms such as the budding yeast Saccharomyces cerevisiae. Since its introduction in 1992, FISH with composite whole chromosome or locus specific probes has become an indispensable tool in the analysis of chromosome behavior in metaphase and interphase cells, and especially of meiotic chromosome pairing of wild-type and mutant yeast strains.

Key words

DNA labeling FISH GISH Immunofluorescence Saccharomyces cerevisiae Chromosome painting Chromosome dynamics 



We thank A. Lorenz, J. Fuchs, and E. Trelles-Sticken for insightful comments and stimulating discussions. The work in the lab of HS was partly supported by the DFG (SCHE 350/10-1, SPP 1384) and H.-H. Ropers, Max-Planck-Inst. for Molecular Genetics, Berlin, FRG.


  1. 1.
    Cherry, J. M., Ball, C., Chervitz, S., Dolinski, K., Dwight, S., Harris, M., Hester, E., Juvik, G., Malekian, A., Roe, T., Weng, S., and Botstein, D. (1998) Saccharomyces Genome Database. Google Scholar
  2. 2.
    The Yeast Genome Directory. (1997). Nature 387, 1–105.Google Scholar
  3. 3.
    Kater, J. M. (1927) Cytology of Saccharomyces cerevisiae with special reference to nuclear division. Biol Bull 52, 436–449.CrossRefGoogle Scholar
  4. 4.
    Wintersberger, U., Binder, M., and Fischer, P. (1975) Cytogenetic demonstration of mitotic chromosomes in the yeast Saccharomyces cerevisiae. Mol Gen Genet 142, 13–17.PubMedGoogle Scholar
  5. 5.
    Kuroiwa, T., Kojima, H., Miyakawa, I., and Sando, N. (1984) Meiotic karyotype of the yeast Saccharomyces cerevisiae. Exp Cell Res 153, 259–265.PubMedCrossRefGoogle Scholar
  6. 6.
    Dresser, M. and Giroux, C. (1988) Meiotic chromosome behavior in spread preparations of yeast. J Cell Biol 106, 567–573.PubMedCrossRefGoogle Scholar
  7. 7.
    Loidl, J., Nairz, K., and Klein, F. (1991) Meiotic chromosome synapsis in a haploid yeast. Chromosoma 100, 221–228.PubMedCrossRefGoogle Scholar
  8. 8.
    Scherthan, H., Loidl, J., Schuster, T., and Schweizer, D. (1992) Meiotic chromosome condensation and pairing in Saccharomyces cerevisiae studied by chromosome painting. Chromosoma 101, 590–595.PubMedCrossRefGoogle Scholar
  9. 9.
    Loidl, J. (2003) Chromosomes of the budding yeast Saccharomyces cerevisiae. Int Rev Cytol 222, 141–196.PubMedCrossRefGoogle Scholar
  10. 10.
    Guacci, V., Hogan, E., and Koshland, D. (1994) Chromosome condensation and sister chromatid pairing in budding yeast. J Cell Biol 125, 517–530.PubMedCrossRefGoogle Scholar
  11. 11.
    Loidl, J., Klein, F., and Scherthan, H. (1994) Homologous pairing is reduced but not abolished in asynaptic mutants of yeast. J Cell Biol 125, 1191–1200.PubMedCrossRefGoogle Scholar
  12. 12.
    Weiner, B. M. and Kleckner, N. (1994) Chromosome pairing via multiple interstitial interactions before and during meiosis in yeast. Cell 77, 977–991.PubMedCrossRefGoogle Scholar
  13. 13.
    Rockmill, B., Sym, M., Scherthan, H., and Roeder, G. S. (1995) Roles for two RecA homologs in promoting meiotic chromosome synapsis. Genes Dev 9, 2684–2695.PubMedCrossRefGoogle Scholar
  14. 14.
    Gotta, M., Laroche, T., and Gasser, S. M. (1999) Analysis of nuclear organization in Saccharomyces cerevisiae. Methods Enzymol 304, 663–672.PubMedCrossRefGoogle Scholar
  15. 15.
    Trelles-Sticken, E., Adelfalk, C., Loidl, J., and Scherthan, H. (2005) Meiotic telomere clustering requires actin for its formation and cohesin for its resolution. J Cell Biol 170, 213–223.PubMedCrossRefGoogle Scholar
  16. 16.
    Admire, A., Shanks, L., Danzl, N., Wang, M., Weier, U., Stevens, W., Hunt, E., and Weinert, T. (2006) Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast. Genes Dev 20, 159–173.PubMedCrossRefGoogle Scholar
  17. 17.
    Straight, A. F., Belmont, A. S., Robinett, C. C., and Murray, A. W. (1996) GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr Biol 6, 1599–1608.PubMedCrossRefGoogle Scholar
  18. 18.
    Michaelis, C., Ciosk, R., and Nasmyth, K. (1997) Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45.PubMedCrossRefGoogle Scholar
  19. 19.
    Aragon-Alcaide, L. and Strunnikov, A. V. (2000) Functional dissection of in vivo interchromosome association in Saccharomyces cerevisiae. Nat Cell Biol 2, 812–818.PubMedCrossRefGoogle Scholar
  20. 20.
    Lorenz, A., Fuchs, J., Trelles-Sticken, E., Scherthan, H., and Loidl, J. (2002) Spatial organisation and behaviour of the parental chromosome sets in the nuclei of Saccharomyces cerevisiae x S. paradoxus hybrids. J Cell Sci 115, 3829–3835.PubMedCrossRefGoogle Scholar
  21. 21.
    Kilmartin, J. V., Wright, B., and Milstein, C. (1982) Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. J Cell Biol 93, 576–582.PubMedCrossRefGoogle Scholar
  22. 22.
    Pringle, J. R., Adams, A. E., Drubin, D. G., and Haarer, B. K. (1991) Immunofluorescence methods for yeast. Methods Enzymol 194, 565–602.PubMedCrossRefGoogle Scholar
  23. 23.
    Kane, S. M. and Roth, R. (1974) Carbohydrate metabolism during ascospore development in yeast. J Bacteriol 118, 8–14.PubMedGoogle Scholar
  24. 24.
    Trelles-Sticken, E., Dresser, M. E., and Scherthan, H. (2000) Meiotic telomere protein Ndj1p is required for meiosis-specific telomere distribution, bouquet formation and efficient homologue pairing. J Cell Biol 151, 95–106.PubMedCrossRefGoogle Scholar
  25. 25.
    Loidl, J., Jin, Q.-W., and Jantsch, M. (1998) Meiotic pairing and segregation of translocation quadrivalents in yeast. Chromosoma 107, 247–254.PubMedCrossRefGoogle Scholar
  26. 26.
    Roth, R. and Halvorson, H. O. (1969) Sporulation of yeast harvested during logarithmic growth. J Bacteriol 98, 831–832.PubMedGoogle Scholar
  27. 27.
    Scherthan, H. and Trelles-Sticken, E. (2002) Yeast FISH: delineation of chromosomal targets in vegetative and meiotic yeast cells, in FISH Technology, Springer Lab Manual (Rautenstrauss, B., and Liehr, T., eds.), Springer, Heidelberg, New York, pp. 329–346.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institut für Radiobiologie der BundeswehrMunichGermany
  2. 2.Max Planck Institute for Molecular GeneticsBerlinGermany
  3. 3.Department of Chromosome BiologyUniversity of ViennaViennaAustria

Personalised recommendations