Advertisement

LNA-FISH for Detection of MicroRNAs in Frozen Sections

  • Asli N. SilahtarogluEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 659)

Abstract

MicroRNAs (miRNAs) are small (∼22 nt) noncoding RNA molecules that regulate the expression of protein coding genes either by cleavage or translational repression. miRNAs comprise one of the most abundant classes of gene regulatory molecules in multicellular organisms. Yet, the function of miRNAs at the tissue, cell, and subcellular levels is still to be explored. Especially, determining spatial and temporal expression of miRNAs has been a challenge due to their short size and low expression. This protocol describes a fast and effective method for detection of miRNAs in frozen tissue sections using fluorescence in situ hybridization. The method employs the unique recognition power of locked nucleic acids as probes together with enhanced detection power of the tyramide signal amplification system for detection of miRNAs in frozen tissues of human and animal origin within a single day.

Key words

Locked nucleic acids MicroRNA Frozen section Cryosections FISH LNA-FISH In situ hybridization Tyramide signal amplification 

Notes

Acknowledgments

The author acknowledges the financial support from the Lundbeck Foundation, the Danish Research Agency and the Dr Sofus Carl Emil Friis and wife Olga Doris Friis Foundation. Wilhelm Johannsen Centre for Functional Genome Research is established by the Danish National Research Foundation.

References

  1. 1.
    Silahtaroglu AN, Nolting D, Dyrskjøt L, Berezikov E, Møller M, Tommerup N, Kauppinen S (2007). Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using Locked Nucleic Acid probes and tyramide signal amplification. Nat Protoc. 200, 2520–2528.CrossRefGoogle Scholar
  2. 2.
    Silahtaroglu AN, Tommerup N, Vissing H (2003). FISHing with locked nucleic acids (LNA): evaluation of different LNA/DNA mixmers. Mol Cell Probes. 17, 165–169.PubMedCrossRefGoogle Scholar
  3. 3.
    Kerstens HM, Poddighe PJ, Hanselaar AG (1995). A novel in situ hybridization signal amplification method based on the deposition of biotinylated tyramide. J Histochem Cytochem. 43, 347–352.PubMedCrossRefGoogle Scholar
  4. 4.
    Thompson RC, Deo M, Turner DL (2007). Analysis of microRNA expression by in situ hybridization with RNA oligonucleotide probes. Methods. 43, 153–161.PubMedCrossRefGoogle Scholar
  5. 5.
    Obernosterer G, Martinez J, Alenius M (2007). Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nat Protoc. 2, 1508–1514.PubMedCrossRefGoogle Scholar
  6. 6.
    Kloosterman WP, Wienholds E, de Bruijn E, Kauppinen S, Plasterk RH (2006). In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods. 3, 27–29.PubMedCrossRefGoogle Scholar
  7. 7.
    Koshkin AA, Nielsen P, Meldgaard M, Rajwanshi VK, Singh SK, Wengel J (1998). LNA (locked nucleic acid): An RNA mimic forming exceedingly stable LNA: LNA duplexes. J Am Chem Soc. 120, 13252–13253.CrossRefGoogle Scholar
  8. 8.
    Stenvang J, Silahtaroglu AN, Lindow M, Elmen J, Kauppinen S (2008). The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin Cancer Biol. 18, 89–102.PubMedCrossRefGoogle Scholar
  9. 9.
    Schepeler T, Reinert JT, Ostenfeld MS, Christensen LL, Silahtaroglu AN, Dyrskjøt L, Wiuf C, Sørensen FJ, Kruhøffer M, Laurberg S, Kauppinen S, Ørntoft TF, Andersen CL (2008). Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res. 68, 6416–6424.PubMedCrossRefGoogle Scholar
  10. 10.
    Bak M, Silahtaroglu A, Møller M, Christensen M, Rath M, Skryabin B, Tommerup N, Kauppinen S (2008). MicroRNA expression in the adult mouse central nervous system. RNA. 14, 432–444.PubMedCrossRefGoogle Scholar
  11. 11.
    Hébert SS, Horré K, Nicolaï L, Papadopoulou AS, Mandemakers W, Silahtaroglu A, Kauppinen S, Delacourte A, De Strooper B (2008). Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A. 105, 6415–6420.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Wilhelm Johannsen Centre for Functional Genome ResearchICMM, The Panum InstituteCopenhagen NDenmark

Personalised recommendations