Skip to main content

High-Resolution Molecular Localization by Freeze-Fracture Replica Labeling

  • Protocol
  • First Online:
Immunoelectron Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 657))

Abstract

The freeze-fracture technique splits the frozen lipid bilayer membrane into two halves and immobilizes membrane proteins and lipids by the vacuum evaporation of platinum and carbon. After a treatment by SDS to remove extramembrane materials, the specimen is subjected to immunogold labeling, which gives information on the two-dimensional distribution of membrane molecules and their relationship to various differentiated structures. In combination with rapid freezing, the freeze-fracture technique has an advantage over other methods using conventional chemical fixation because the distribution of lipids as well as proteins can be observed at the mesoscale in a wide area of the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Severs, N. J. and Shotton, D. M., ed. (1995) Rapid Freezing, Freeze Fracture, and Deep Etching. Wiley-Liss, New York.

    Google Scholar 

  2. Fujimoto, K. (1995) Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. Application to the immunogold labeling of intercellular junctional complexes. J. Cell Sci. 108, 3443–3449.

    PubMed  CAS  Google Scholar 

  3. Fujimoto, K. (1997) SDS-digested freeze-fracture replica labeling electron microscopy to study the two-dimensional distribution of integral membrane proteins and phospholipids in biomembranes: practical procedure, interpretation and application. Histochem. Cell Biol. 107, 87–96.

    Article  PubMed  CAS  Google Scholar 

  4. Rash, J. E. and Yasumura, T. (1999) Direct immunogold labeling of connexins and aquaporin-4 in freeze-fracture replicas of liver, brain, and spinal cord: factors limiting quantitative analysis. Cell Tissue Res. 296, 307–321.

    Article  PubMed  CAS  Google Scholar 

  5. Robenek, H., Buers, I., Hofnagel, O., Robenek, M. J., Troyer, D., and Severs, N. J. (2009) Compartmentalization of proteins in lipid droplet biogenesis. Biochim. Biophys. Acta. 1791, 408–418.

    Google Scholar 

  6. Hagiwara, A., Fukazawa, Y., Deguchi-Tawarada, M., Ohtsuka, T., and Shigemoto, R. (2005) Differential distribution of release-related proteins in the hippocampal CA3 area as revealed by freeze-fracture replica labeling. J. Comp. Neurol. 489, 195–216.

    Article  PubMed  CAS  Google Scholar 

  7. Fujita, A., Cheng, J., Hirakawa, M., Furukawa, K., Kusunoki, S., and Fujimoto, T. (2007) Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol. Biol. Cell. 18, 2112–2122.

    Article  PubMed  CAS  Google Scholar 

  8. Fujimoto, T. and Fujimoto, K. (1997) Metal sandwich method to quick-freeze monolayer cultured cells for freeze-fracture. J. Histochem. Cytochem. 45, 595–598.

    Article  PubMed  CAS  Google Scholar 

  9. Kusumi, A. and Suzuki, K. (2005) Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim. Biophys. Acta 1746, 234–251.

    Article  PubMed  CAS  Google Scholar 

  10. Masugi-Tokita, M. and Shigemoto, R. (2007) High-resolution quantitative visualization of glutamate and GABA receptors at central synapses. Curr. Opin. Neurobiol. 17, 387–393.

    Article  PubMed  CAS  Google Scholar 

  11. Schlormann, W., John, M., Steiniger, F., Westermann, M., and Richter, W. (2007) Improved antigen retrieval in freeze-fracture cytochemistry by evaporation of carbon as first replication layer. Histochem. Cell Biol. 127, 633–639.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fujita, A., Fujimoto, T. (2010). High-Resolution Molecular Localization by Freeze-Fracture Replica Labeling. In: Schwartzbach, S., Osafune, T. (eds) Immunoelectron Microscopy. Methods in Molecular Biology, vol 657. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-783-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-783-9_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-782-2

  • Online ISBN: 978-1-60761-783-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics