Skip to main content

Analysis of Post-translational Modifications by LC-MS/MS

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 658))

Abstract

Post-translational modifications are highly dynamic and known to regulate many cellular processes. Both the site and the stoichiometry of modification of a given protein sequence can have profound effects on the regulation of protein function. Thus, the identification of sites of post-translational modification is crucial for fully deciphering the biological roles of any given protein. The acute regulation and typically low stoichiometry of many post-translational modifications makes characterization of the sites of modification challenging. Thus, the development of analytical strategies to aid the selective enrichment and characterization of these species is paramount. Ongoing developments in mass spectrometry resulting in increased speed and sensitivity of analysis mean that mass spectrometry has become the ideal analytical tool for the qualitative and quantitative analysis of protein modifications. This chapter provides an overview of the most popular LC-MS/MS-based strategies for the enrichment of modified peptides/proteins and mass spectrometric workflows targeted toward the analysis of specific post-translationally modified analytes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Walsh, C. (2005) Posttranslational modification of proteins: expanding nature’s inventory. B. Roberts, Colorado.

    Google Scholar 

  2. Hunter, T. (2000) Signaling―2000 and beyond. Cell 100, 113–127.

    Article  PubMed  CAS  Google Scholar 

  3. Seet, B. T., Dikic, I., Zhou, M. M., and Pawson, T. (2006) Reading protein modifications with interaction domains. Nat. Rev. 7, 473–483.

    Article  CAS  Google Scholar 

  4. Eyers, C. E., and Gaskell, S. J. (2008) Mass spectrometry to identify post-translational modifications. Wiley Encyclopedia of Chemical Biology. doi:10.1002/9780470048672. wecb469.

    Google Scholar 

  5. Morelle, W., and Michalski, J. C. (2007) Analysis of protein glycosylation by mass spectrometry. Nat. Protoc 2, 1585–1602.

    Article  PubMed  CAS  Google Scholar 

  6. Dwek, R. A. (1996) Glycobiology: toward understanding the function of sugars. Chem. Rev. 96, 683–720.

    Article  PubMed  CAS  Google Scholar 

  7. Helenius, A., and Aebi, M. (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049.

    Article  PubMed  CAS  Google Scholar 

  8. Weissman, A. M. (2001) Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell. Biol. 2, 169–178.

    Article  PubMed  CAS  Google Scholar 

  9. Drews, O., Zong, C., and Ping, P. (2007) Exploring proteasome complexes by proteomic approaches. Proteomics 7, 1047–1058.

    Article  PubMed  CAS  Google Scholar 

  10. Washburn, M. P., Wolters, D., and Yates, J. R., 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247.

    Article  PubMed  CAS  Google Scholar 

  11. Haydon, C. E., Eyers, P. A., Aveline-Wolf, L. D., Resing, K. A., Maller, J. L., and Ahn, N. G. (2003) Identification of novel phosphorylation sites on Xenopus laevis Aurora A and analysis of phosphopeptide enrichment by immobilized metal-affinity chromatography. Mol. Cell. Proteomics 2, 1055–1067.

    Article  PubMed  CAS  Google Scholar 

  12. Nuhse, T. S., Stensballe, A., Jensen, O. N., and Peck, S. C. (2003) Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol. Cell. Proteomics 2, 1234–1243.

    Article  PubMed  Google Scholar 

  13. Reinders, J., and Sickmann, A. (2005) State-of-the-art in phosphoproteomics. Proteomics 5, 4052–4061.

    Article  PubMed  CAS  Google Scholar 

  14. Schweppe, R. E., Haydon, C. E., Lewis, T. S., Resing, K. A., and Ahn, N. G. (2003) The characterization of protein post-translational modifications by mass spectrometry. Acc. Chem, Res. 36, 453–461.

    Article  CAS  Google Scholar 

  15. Fraga, M. F., Ballestar, E., Villar-Garea, A., Boix-Chornet, M., Espada, J., Schotta, G., Bonaldi, T., Haydon, C., Ropero, S., Petrie, K., Iyer, N. G., Perez-Rosado, A., Calvo, E., Lopez, J. A., Cano, A., Calasanz, M. J., Colomer, D., Piris, M. A., Ahn, N., Imhof, A., Caldas, C., Jenuwein, T., and Esteller, M. (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. 37, 391–400.

    Article  PubMed  CAS  Google Scholar 

  16. Tyler, R. K., Chu, M. L., Johnson, H., McKenzie, E. A., Gaskell, S. J., and Eyers, P. A. (2009) Phosphoregulation of human Mps1 kinase. Biochem. J. 417, 173–181.

    Article  PubMed  CAS  Google Scholar 

  17. Mirgorodskaya, E., Roepstorff, P., and Zubarev, R. A. (1999) Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier transform mass spectrometer. Anal. Chem. 71, 4431–4436.

    Article  PubMed  CAS  Google Scholar 

  18. Zubarev, R. A. (2004) Electron-capture dissociation tandem mass spectrometry. Curr. Opin. Biotechnol. 15, 12–16.

    Article  PubMed  CAS  Google Scholar 

  19. Tsybin, Y. O., Ramstrom, M., Witt, M., Baykut, G., and Hakansson, P. (2004) Peptide and protein characterization by high-rate electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry. J. Mass Spectrom. 39, 719–729.

    Article  PubMed  CAS  Google Scholar 

  20. Swaney, D. L., McAlister, G. C., Wirtala, M., Schwartz, J. C., Syka, J. E., and Coon, J. J. (2007) Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. Anal. Chem. 79, 477–485.

    Article  PubMed  CAS  Google Scholar 

  21. Swaney, D. L., McAlister, G. C., Wirtala, M., Schwartz, J. C., Syka, J. E. P., and Coon, J. J. (2007) Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. Anal. Chem. 79, 477–485.

    Article  PubMed  CAS  Google Scholar 

  22. Chi, A., Huttenhower, C., Geer, L. Y., Coon, J. J., Syka, J. E. P., Bai, D. L., Shabanowitz, J., Burke, D. J., Troyanskaya, O. G., and Hunt, D. F. (2007) Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. 10.1073/pnas.0607084104. Proc. Natl. Acad. Sci. USA 104, 2193–2198.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang, Q., Schepmoes, A. A., Brock, J. W. C., Wu, S., Moore, R. J., Purvine, S. O., Baynes, J. W., Smith, R. D., and Metz, T. O. (2008) Improved methods for the enrichment and analysis of glycated peptides. doi:10.1021/ac801704j. Anal. Chem. 80, 9822–9829.

    Article  PubMed  CAS  Google Scholar 

  24. Medzihradszky, K. F., Guan, S., Maltby, D. A., and Burlingame, A. L. (2007) Sulfopeptide fragmentation in electron-capture and electron-transfer dissociation. J. Am. Soc. Mass Spectrom. 18, 1617–1624.

    Article  PubMed  CAS  Google Scholar 

  25. Steen, H., Jebanathirajah, J. A., Rush, J., Morrice, N., and Kirschner, M. W. (2006) Phosphorylation analysis by mass spectrometry: myths, facts, and the consequences for qualitative and quantitative measurements. Mol. Cell. Proteomics 5, 172–181.

    PubMed  CAS  Google Scholar 

  26. Peng, J., Schwartz, D., Elias, J. E., Thoreen, C. C., Cheng, D., Marsischky, G., Roelofs, J., Finley, D., and Gygi, S. P. (2003) A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21, 921–926.

    Article  PubMed  CAS  Google Scholar 

  27. Blagoev, B., Ong, S.-E., Kratchmarova, I., and Mann, M. (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat. Biotechnol. 22, 1139–1145.

    Article  PubMed  CAS  Google Scholar 

  28. Rush, J., Moritz, A., Lee, K. A., Guo, A., Goss, V. L., Spek, E. J., Zhang, H., Zha, X. M., Polakiewicz, R. D., and Comb, M. J. (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol. 23, 94–101.

    Article  PubMed  CAS  Google Scholar 

  29. Cortez, D., Glick, G., and Elledge, S. J. (2004) Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proc. Natl. Acad. Sci. USA 101, 10078–10083.

    Article  PubMed  CAS  Google Scholar 

  30. Gronborg, M., Kristiansen, T. Z., Stensballe, A., Andersen, J. S., Ohara, O., Mann, M., Jensen, O. N., and Pandey, A. (2002) A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, Frigg, as a protein kinase A substrate. Mol. Cell. Proteomics 1, 517–527.

    Article  PubMed  CAS  Google Scholar 

  31. Kane, S., Sano, H., Liu, S. C., Asara, J. M., Lane, W. S., Garner, C. C., and Lienhard, G. E. (2002) A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain. J. Biol. Chem. 277, 22115–22118.

    Article  PubMed  CAS  Google Scholar 

  32. Vasilescu, J., Smith, J. C., Ethier, M., and Figeys, D. (2005) Proteomic analysis of ubiquitinated proteins from human MCF-7 breast cancer cells by immunoaffinity purification and mass spectrometry. doi:10.1021/pr050265i. J. Proteome Res. 4, 2192–2200.

    Article  PubMed  CAS  Google Scholar 

  33. Nawarak, J., Phutrakul, S., and Chen, S.-T. (2004) Analysis of lectin-bound glycoproteins in snake venom from the Elapidae and Viperidae families. J. Proteome Res. 3, 383–392.

    Article  PubMed  CAS  Google Scholar 

  34. Qiu, R., and Regnier, F. E. (2005) Use of Multidimensional lectin affinity chromatography in differential glycoproteomics. doi:10.1021/ac048751x. Anal. Chem. 77, 2802–2809.

    Article  PubMed  CAS  Google Scholar 

  35. Drake, R. R., Schwegler, E. E., Malik, G., Diaz, J., Block, T., Mehta, A., and Semmes, O. J. (2006) Lectin capture strategies combined with mass spectrometry for the discovery of serum glycoprotein biomarkers. 10.1074/mcp.M600176-MCP200. Mol. Cell. Proteomics 5, 1957–1967.

    Article  PubMed  CAS  Google Scholar 

  36. Andersson, L., and Porath, J. (1986) Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal. Biochem. 154, 250–254.

    Article  PubMed  CAS  Google Scholar 

  37. Posewitz, M. C., and Tempst, P. (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. doi:10.1021/ac981409y. Anal. Chem. 71, 2883–2892.

    Article  PubMed  CAS  Google Scholar 

  38. Larsen, M. R., Thingholm, T. E., Jensen, O. N., Roepstorff, P., and Jorgensen, T. J. D. (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. 10.1074/mcp.T500007-MCP200. Mol. Cell. Proteomics 4, 873–886.

    Article  PubMed  CAS  Google Scholar 

  39. Kweon, H. K., and Hakansson, K. (2006) Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. doi:10.1021/ac0522355. Anal. Chem. 78, 1743–1749.

    Article  PubMed  CAS  Google Scholar 

  40. Ficarro, S. B., McCleland, M. L., Stukenberg, P. T., Burke, D. J., Ross, M. M., Shabanowitz, J., Hunt, D. F., and White, F. M. (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 20, 301–305.

    Article  PubMed  CAS  Google Scholar 

  41. Larsen, M. R., Thingholm, T. E., Jensen, O. N., Roepstorff, P., and Jorgensen, T. J. (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell. Proteomics 4, 873–886.

    Article  PubMed  CAS  Google Scholar 

  42. Wu, J., Shakey, Q., Liu, W., Schuller, A., and Follettie, M. T. (2007) Global profiling of phosphopeptides by titania affinity enrichment. J. Proteome Res. 6, 4684–4689.

    Article  PubMed  CAS  Google Scholar 

  43. Thingholm, T. E., Jensen, O. N., Robinson, P. J., and Larsen, M. R. (2008) SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol. Cell. Proteomics 7, 661–671.

    PubMed  CAS  Google Scholar 

  44. Jensen, S. S., and Larsen, M. R. (2007) Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun. Mass Spectrom. 21, 3635–3645.

    Article  PubMed  CAS  Google Scholar 

  45. Beausoleil, S. A., Jedrychowski, M., Schwartz, D., Elias, J. E., Villen, J., Li, J., Cohn, M. A., Cantley, L. C., and Gygi, S. P. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. USA 101, 12130–12135.

    Article  PubMed  CAS  Google Scholar 

  46. Han, G., Ye, M., Zhou, H., Jiang, X., Feng, S., Tian, R., Wan, D., Zou, H., and Gu, J. (2008) Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography. Proteomics 8, 1346–1361.

    Article  PubMed  CAS  Google Scholar 

  47. Zhang, X., Ye, J., Jensen, O. N., and Roepstorff, P. (2007) Highly efficient phosphopeptide enrichment by calcium phosphate precipitation combined with subsequent IMAC enrichment. Mol. Cell. Proteomics 6, 2032–2042.

    Article  PubMed  CAS  Google Scholar 

  48. Hagglund, P., Bunkenborg, J., Elortza, F., Jensen, O. N., and Roepstorff, P. (2004) A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J. Proteome Res. 3, 556–566.

    Article  PubMed  Google Scholar 

  49. Calvano, C. D., Zambonin, C. G., and Jensen, O. N. (2008) Assessment of lectin and HILIC based enrichment protocols for characterization of serum glycoproteins by mass spectrometry. J. Proteomics 71, 304–317.

    Article  PubMed  CAS  Google Scholar 

  50. Picariello, G., Ferranti, P., Mamone, G., Roepstorff, P., and Addeo, F. (2008) Identification of N-linked glycoproteins in human milk by hydrophilic interaction liquid chromatography and mass spectrometry. Proteomics 8, 3833–3847.

    Article  PubMed  CAS  Google Scholar 

  51. Wuhrer, M., de Boer, A. R., and Deelder, A. M. (2009) Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom. Rev. 28, 192–206.

    Google Scholar 

  52. IUPAC (1997) Compendium of chemical terminology, 2nd (The “Gold Book”) ed, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  53. Carr, S. A., Huddleston, M. J., and Annan, R. S. (1996) Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Anal. Biochem. 239, 180–192.

    Article  PubMed  CAS  Google Scholar 

  54. Steen, H., Pandey, A., Andersen, J. S., and Mann, M. (2002) Analysis of tyrosine phosphorylation sites in signaling molecules by a phosphotyrosine-specific immonium ion scanning method. 10.1126/stke.2002.154.pl16. Sci. STKE 2002, pl16.

    Article  Google Scholar 

  55. Huddleston, M. J., Bean, M. F., and Carr, S. A. (1993) Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. Anal. Chem. 65, 877–884.

    Article  PubMed  CAS  Google Scholar 

  56. Bean, M. F., Annan, R. S., Hemling, M. E., Mentzer, M., Huddleston, M. J., and Carr, S. A. (1995) LC-MS methods for selective detection of posttranslational modifications in proteins: glycosylation, phosphorylation, sulfation, and acylation techniques in protein chemistry. In Crabb, J. W. (Ed.), Vol. 6, pp. 107–116, Academic Press.

    Google Scholar 

  57. Kim, J. Y., Kim, K. W., Kwon, H. J., Lee, D. W., and Yoo, J. S. (2002) Probing lysine acetylation with a modification-specific marker ion using high-performance liquid chromatography/electrospray-mass spectrometry with collision-induced dissociation. doi:10.1021/ac0256080. Anal. Chem. 74, 5443–5449.

    Article  PubMed  CAS  Google Scholar 

  58. Sweet, S. M., Mardakheh, F. K., Ryan, K. J., Langton, A. J., Heath, J. K., and Cooper, H. J. (2008) Targeted online liquid chromatography electron capture dissociation mass spectrometry for the localization of sites of in vivo phosphorylation in human Sprouty2. Anal. Chem. 80, 6650–6657.

    Article  PubMed  CAS  Google Scholar 

  59. Zubarev, R. A., Zubarev, A. R., and Savitski, M. M. (2008) Electron capture/transfer versus collisionally activated/induced dissociations: solo or duet? J. Am. Soc. Mass Spectrom. 19, 753–761.

    Article  PubMed  CAS  Google Scholar 

  60. Unwin, R. D., Griffiths, J. R., Leverentz, M. K., Grallert, A., Hagan, I. M., and Whetton, A. D. (2005) Multiple reaction monitoring to identify sites of protein phosphorylation with high sensitivity. 10.1074/mcp.M500113-MCP200. Mol. Cell. Proteomics 4, 1134–1144.

    Article  PubMed  CAS  Google Scholar 

  61. Sahana Mollah, I. E. W., Phung, Q., Arnott, D., Dixit, V. M., Lill, J. R. (2007) Targeted mass spectrometric strategy for global mapping of ubiquitination on proteins. Rapid Commun. Mass Spectrom. 21, 3357–3364.

    Article  PubMed  Google Scholar 

  62. Hegeman, A. D., Harms, A. C., Sussman, M. R., Bunner, A. E., and Harper, J. F. (2004) An isotope labeling strategy for quantifying the degree of phosphorylation at multiple sites in proteins. J. Am. Soc. Mass Spectrom. 15, 647–653.

    Article  PubMed  CAS  Google Scholar 

  63. Zhang, X., Jin, Q. K., Carr, S. A., and Annan, R. S. (2002) N-terminal peptide labeling strategy for incorporation of isotopic tags: a method for the determination of site-specific absolute phosphorylation stoichiometry. Rapid Commun. Mass Spectrom. 16, 2325–2332.

    Article  PubMed  CAS  Google Scholar 

  64. Mayor, T., Graumann, J., Bryan, J., MacCoss, M. J., and Deshaies, R. J. (2007) Quantitative profiling of ubiquitylated proteins reveals proteasome substrates and the substrate repertoire influenced by the Rpn10 receptor pathway. Mol. Cell. Proteomics 6, 1885–1895.

    Article  PubMed  CAS  Google Scholar 

  65. Mayya, V., Rezual, K., Wu, L., Fong, M. B., and Han, D. K. (2006) Absolute quantification of multisite phosphorylation by selective reaction monitoring mass spectrometry: determination of inhibitory phosphorylation status of cyclin-dependent kinases. Mol. Cell. Proteomics 5, 1146–1157.

    Article  PubMed  CAS  Google Scholar 

  66. Bonenfant, D., Towbin, H., Coulot, M., Schindler, P., Mueller, D. R., and van Oostrum, J. (2007) Analysis of dynamic changes in post-translational modifications of human histones during cell cycle by mass spectrometry. Mol. Cell. Proteomics 6, 1917–1932.

    Article  PubMed  CAS  Google Scholar 

  67. Pan, C., Gnad, F., Olsen, J. V., and Mann, M. (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534–4546.

    Article  PubMed  CAS  Google Scholar 

  68. Amanchy, R., Kalume, D. E., and Pandey, A. (2005) Stable isotope labeling with amino acids in cell culture (SILAC) for studying dynamics of protein abundance and posttranslational modifications. Sci STKE 2005, pl2.

    Article  Google Scholar 

  69. Steen, H., Jebanathirajah, J. A., Springer, M., and Kirschner, M. W. (2005) Stable isotope-free relative and absolute quantitation of protein phosphorylation stoichiometry by MS. Proc. Natl. Acad. Sci. USA 102, 3948–3953.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Johnson, H., Eyers, C.E. (2010). Analysis of Post-translational Modifications by LC-MS/MS. In: Cutillas, P., Timms, J. (eds) LC-MS/MS in Proteomics. Methods in Molecular Biology, vol 658. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-780-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-780-8_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-779-2

  • Online ISBN: 978-1-60761-780-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics