Quantification of Protein Kinase Activities by LC-MS

  • Maria P. Alcolea
  • Pedro R. Cutillas
Part of the Methods in Molecular Biology book series (MIMB, volume 658)


Measuring the enzymatic activity of protein kinases in cell and tissue extracts represents a difficult task owing to the complex regulation and dynamics of such enzymes. Here we describe a sensitive and specific approach for the quantitative analysis of PI3K-dependent protein kinase activity based on the mass spectrometry measurement of reaction products. The principle of this method can be applied to develop other kinase assays and thus should contribute to the understanding of processes controlled by protein kinases. Because of the enhanced sensitivity of this technique, it may be applied to the multiplex measurement of pathway activities when sample amounts are limiting.

Key words

PI3K signalling pathway AKT/PKB kinase enzymatic assay strong cation exchange (SCX) kinase activity quantification mass spectrometry cancer 


  1. 1.
    Manning, G., Plowman, G. D., Hunter, T., and Sudarsanam, S. (2002) Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci 27, 514–520.PubMedCrossRefGoogle Scholar
  2. 2.
    Cohen, P. (2002) Protein kinases–the major drug targets of the twenty-first century?, Nat Rev Drug Discov 1, 309–315.PubMedCrossRefGoogle Scholar
  3. 3.
    Sawyers, C. L. (2008) The cancer biomarker problem. Nature 452, 548–552.PubMedCrossRefGoogle Scholar
  4. 4.
    Haber, D. A., and Settleman, J. (2007) Cancer: drivers and passengers. Nature 446, 145–146.PubMedCrossRefGoogle Scholar
  5. 5.
    Johnson, S. A., and Hunter, T. (2005) Kinomics: methods for deciphering the kinome. Nat Methods 2, 17–25.PubMedCrossRefGoogle Scholar
  6. 6.
    Turk, B. E. (2008) Understanding and exploiting substrate recognition by protein kinases. Curr Opin Chem Biol 12, 4–10.PubMedCrossRefGoogle Scholar
  7. 7.
    Martelli, A. M., Tazzari, P. L., Evangelisti, C., Chiarini, F., Blalock, W. L., Billi, A. M., Manzoli, L., McCubrey, J. A., and Cocco, L. (2007) Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin module for acute myelogenous leukemia therapy: from bench to bedside. Curr Med Chem 14, 2009–2023.PubMedCrossRefGoogle Scholar
  8. 8.
    Fasolo, A., and Sessa, C. (2008) mTOR inhibitors in the treatment of cancer. Expert Opin. Investig. Drugs 17, 1717–1734.PubMedCrossRefGoogle Scholar
  9. 9.
    Vanhaesebroeck, B., Leevers, S. J., Ahmadi, K., Timms, J., Katso, R., Driscoll, P. C., Woscholski, R., Parker, P. J., and Waterfield, M. D. (2001) Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem. 70, 535–602.PubMedCrossRefGoogle Scholar
  10. 10.
    Yuan, T. L., and Cantley, L. C. (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27, 5497–5510.PubMedCrossRefGoogle Scholar
  11. 11.
    Cutillas, P. R., Khwaja, A., Graupera, M., Pearce, W., Gharbi, S., Waterfield, M., and Vanhaesebroeck, B. (2006) Ultrasensitive and absolute quantification of the phosphoinositide 3-kinase/Akt signal transduction pathway by mass spectrometry. Proc. Natl. Acad. Sci. USA 103, 8959–8964.PubMedCrossRefGoogle Scholar
  12. 12.
    Bozinovski, S., Cristiano, B. E., Marmy-Conus, N., and Pearson, R. B. (2002) The synthetic peptide RPRAATF allows specific assay of Akt activity in cell lysates. Anal. Biochem. 305, 32–39.PubMedCrossRefGoogle Scholar
  13. 13.
    Shults, M. D., Janes, K. A., Lauffenburger, D. A., and Imperiali, B. (2005) A multiplexed homogeneous fluorescence-based assay for protein kinase activity in cell lysates. Nat. Methods 2, 277–283.PubMedCrossRefGoogle Scholar
  14. 14.
    Hazeki, O., Hazeki, K., Katada, T., and Ui, M. (1996) Inhibitory effect of wortmannin on phosphatidylinositol 3-kinase-mediated cellular events. J. Lipid Mediat. Cell Signal 14, 259–261.PubMedCrossRefGoogle Scholar
  15. 15.
    Vlahos, C. J., Matter, W. F., Hui, K. Y., and Brown, R. F. (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem. 269, 5241–5248.PubMedGoogle Scholar
  16. 16.
    Powis, G., Bonjouklian, R., Berggren, M. M., Gallegos, A., Abraham, R., Ashendel, C., Zalkow, L., Matter, W. F., Dodge, J., Grindey, G., and et al. (1994) Wortmannin, a potent and selective inhibitor of phosphatidylinositol-3-kinase. Cancer Res. 54, 2419–2423.PubMedGoogle Scholar
  17. 17.
    Alessi, D. R., Caudwell, F. B., Andjelkovic, M., Hemmings, B. A., and Cohen, P. (1996) Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase. FEBS Lett. 399, 333–338.PubMedCrossRefGoogle Scholar
  18. 18.
    Kobayashi, T., Deak, M., Morrice, N., and Cohen, P. (1999) Characterization of the structure and regulation of two novel isoforms of serum- and glucocorticoid-induced protein kinase. Biochem. J. 344 Pt 1, 189–197.CrossRefGoogle Scholar
  19. 19.
    Park, J., Leong, M. L., Buse, P., Maiyar, A. C., Firestone, G. L., and Hemmings, B. A. (1999) Serum and glucocorticoid-inducible kinase (SGK) is a target of the PI 3-kinase-stimulated signaling pathway. Embo. J. 18, 3024–3033.PubMedCrossRefGoogle Scholar
  20. 20.
    Villen, J., and Gygi, S. P. (2008) The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat. Protoc. 3, 1630–1638.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Maria P. Alcolea
    • 1
  • Pedro R. Cutillas
    • 1
  1. 1.Analytical Signalling Group, Centre for Cell SignallingInstitute of Cancer, Bart’s and the London School of Medicine, Queen Mary University of LondonLondonUK

Personalised recommendations