Advertisement

Analysis of Peptides in Biological Fluids by LC-MS/MS

  • Pedro R. Cutillas
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 658)

Abstract

Urine contains large amounts of small peptides, which may represent a rich, yet largely unexplored, source of novel biomarkers for disease monitoring. This chapter describes detailed procedures for the analysis of urinary polypeptides by LC-MS/MS. Hundreds to thousands of small peptides (∼700 to ∼7000 Da) can be detected in urine with the described techniques. Extraction procedures, based on commercially available reagents, effectively remove interfering urinary organic and inorganic salts and neutral compounds, making this a robust and simple assay with the power to detect hundreds to thousands of polypeptides in urine. Analysis time is relatively short, making this protocol a valuable alternative to conventional proteomic techniques based on multidimensional separations. The methodology is therefore particularly useful when the aim is to analyse samples with sufficient depth and throughput so as to make it useful to compare large numbers of specimens. Procedures for enhancing quantitative and qualitative analysis of LC-MS/MS data are also detailed.

Key words

Urinary proteomics peptidomics urine analysis quantification 

References

  1. 1.
    Decramer, S., Gonzalez de Peredo, A., Breuil, B., Mischak, H., Monsarrat, B., Bascands, J. L., and Schanstra, J. P. (2008) Urine in clinical proteomics. Mol. Cell. Proteomics. 7, 1850–1862.PubMedCrossRefGoogle Scholar
  2. 2.
    Thongboonkerd, V. (2008) Urinary proteomics: towards biomarker discovery, diagnostics and prognostics. Mol. Biosyst. 4, 810–815.PubMedCrossRefGoogle Scholar
  3. 3.
    Lam, T., and Nabi, G. (2007) Potential of urinary biomarkers in early bladder cancer diagnosis. Expert. Rev. Anticancer Ther. 7, 1105–1115.PubMedCrossRefGoogle Scholar
  4. 4.
    M'Koma, A. E., Blum, D. L., Norris, J. L., Koyama, T., Billheimer, D., Motley, S., Ghiassi, M., Ferdowsi, N., Bhowmick, I., Chang, S. S., Fowke, J. H., Caprioli, R. M., and Bhowmick, N. A. (2007) Detection of pre-neoplastic and neoplastic prostate disease by MALDI profiling of urine. Biochem. Biophys. Res. Commun. 353, 829–834.PubMedCrossRefGoogle Scholar
  5. 5.
    Perroud, B., Lee, J., Valkova, N., Dhirapong, A., Lin, P. Y., Fiehn, O., Kultz, D., and Weiss, R. H. (2006) Pathway analysis of kidney cancer using proteomics and metabolic profiling. Mol. Cancer 5, 64.PubMedCrossRefGoogle Scholar
  6. 6.
    Schiffer, E. (2007) Biomarkers for prostate cancer. World J. Urol. 25, 557–562.PubMedCrossRefGoogle Scholar
  7. 7.
    Celis, J. E., Wolf, H., and Ostergaard, M. (2000) Bladder squamous cell carcinoma biomarkers derived from proteomics. Electrophoresis 21, 2115–2121.PubMedCrossRefGoogle Scholar
  8. 8.
    Vilasi, A., Cutillas, P. R., Maher, A. D., Zirah, S. F., Capasso, G., Norden, A. W., Holmes, E., Nicholson, J. K., and Unwin, R. J. (2007) Combined proteomic and metabonomic studies in three genetic forms of the renal Fanconi syndrome. Am. J. Physiol. Renal. Physiol. 293, F456–F467.PubMedCrossRefGoogle Scholar
  9. 9.
    Cutillas, P. R., Chalkley, R. J., Hansen, K. C., Cramer, R., Norden, A. G., Waterfield, M. D., Burlingame, A. L., and Unwin, R. J. (2004) The urinary proteome in Fanconi syndrome implies specificity in the reabsorption of proteins by renal proximal tubule cells. Am. J. Physiol. Renal. Physiol. 287, F353–F364.PubMedCrossRefGoogle Scholar
  10. 10.
    Zimmerli, L. U., Schiffer, E., Zurbig, P., Good, D. M., Kellmann, M., Mouls, L., Pitt, A. R., Coon, J. J., Schmieder, R. E., Peter, K. H., Mischak, H., Kolch, W., Delles, C., and Dominiczak, A. F. (2008) Urinary proteomic biomarkers in coronary artery disease. Mol. Cell. Proteomics. 7, 290–298.PubMedGoogle Scholar
  11. 11.
    Cutillas, P. R., Norden, A. G., Cramer, R., Burlingame, A. L., and Unwin, R. J. (2004) Urinary proteomics of renal Fanconi syndrome. Contrib. Nephrol. 141, 155–169.PubMedCrossRefGoogle Scholar
  12. 12.
    Thongboonkerd, V., Chutipongtanate, S., and Kanlaya, R. (2006) Systematic evaluation of sample preparation methods for gel-based human urinary proteomics: quantity, quality, and variability. J. Proteome Res. 5, 183–191.PubMedCrossRefGoogle Scholar
  13. 13.
    Mischak, H., Coon, J. J., Novak, J., Weissinger, E. M., Schanstra, J. P., and Dominiczak, A. F. (2008) Capillary electrophoresis-mass spectrometry as a powerful tool in biomarker discovery and clinical diagnosis: An update of recent developments. Mass Spectrom . Rev. 28, 703–724.Google Scholar
  14. 14.
    Cutillas, P. R., Norden, A. G., Cramer, R., Burlingame, A. L., and Unwin, R. J. (2003) Detection and analysis of urinary peptides by on-line liquid chromatography and mass spectrometry: application to patients with renal Fanconi syndrome. Clin. Sci. (Lond) 104, 483–490.CrossRefGoogle Scholar
  15. 15.
    America, A. H., and Cordewener, J. H. (2008) Comparative LC-MS: a landscape of peaks and valleys. Proteomics 8, 731–749.PubMedCrossRefGoogle Scholar
  16. 16.
    America, A. H., Cordewener, J. H., van Geffen, M. H., Lommen, A., Vissers, J. P., Bino, R. J., and Hall, R. D. (2006) Alignment and statistical difference analysis of complex peptide data sets generated by multidimensional LC-MS. Proteomics 6, 641–653.PubMedCrossRefGoogle Scholar
  17. 17.
    de Groot, J. C., Fiers, M. W., van Ham, R. C., and America, A. H. (2008) Post alignment clustering procedure for comparative quantitative proteomics LC-MS data. Proteomics 8, 32–36.PubMedCrossRefGoogle Scholar
  18. 18.
    Cutillas, P. R., and Vanhaesebroeck, B. (2007) Quantitative profile of five murine core proteomes using label-free functional proteomics. Mol. Cell. Proteomics. 6, 1560–1573.PubMedCrossRefGoogle Scholar
  19. 19.
    Park, S. K., Venable, J. D., Xu, T., and Yates, J. R., 3rd. (2008) A quantitative analysis software tool for mass spectrometry-based proteomics. Nat. Methods 5, 319–322.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Pedro R. Cutillas
    • 1
  1. 1.Analytical Signalling Group, Centre for Cell SignallingInstitute of Cancer, Bart’s and the London School of Medicine, Queen Mary University of LondonLondonUK

Personalised recommendations