Advertisement

Quantification of Proteins by Label-Free LC-MS/MS

  • Yishai Levin
  • Sabine Bahn
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 658)

Abstract

Quantitative proteomic profiling is becoming a widely used approach in systems biology and biomarker discovery. There is a growing realization that quantitative studies require high numbers of non-pooled samples for increased statistical power. We present a descriptive protocol for label-free quantitation of proteins by LC-MS/MS that enables to obtain both quantitative and qualitative information in one study without the need to pool samples or label them.

Key words

Label free proteomics LC-MS, MSE time alignment nanoLC-MS/MS quantitation relative quantitation 

Notes

Acknowledgment

The research was kindly supported by the Stanley Medical Research Institute (SMRI). We also thank Psynova Neurotech® for center support and for Ph.D. funding. The service team from Waters Corp. is acknowledged for its technical support and assistance.

We would also like to present our appreciation to Dr. Hassan Rahmoune and Mr. Emanuel Schwarz of the Cambridge Center for Neuropsychiatric Research for the helpful discussions and suggestions.

References

  1. 1.
    Gao, J., Garulacan, L. A., Storm, S. M., et al. (2005) Biomarker discovery in biological fluids. Methods 35(3), 291–302.PubMedCrossRefGoogle Scholar
  2. 2.
    Chan, K. C., Lucas, D. A., Hise, D., et al. (2004) Analysis of the human serum proteome. Clin. Proteomics 1(2), 101–226.CrossRefGoogle Scholar
  3. 3.
    Levin, Y., Schwarz, E., Wang, L., Leweke, F. M., Bahn, S. (2007) Label-free LC-MS/MS quantitative proteomics for large-scale biomarker discovery in complex samples. J. Sep. Sci. 30(14), 2198–2203.PubMedCrossRefGoogle Scholar
  4. 4.
    Levin, Y., LW, E., Ingudomnukul, E., Schwarz, S., Baron-Cohen, A., Palotás, S., Bahn. (2009) Real-time evaluation of experimental variation in large-scale LC–MS/MS-based quantitative proteomics of complex samples. J. Chromatogr. B, 877, 1299–1305.Google Scholar
  5. 5.
    van der Greef, J., Martin, S., Juhasz, P., et al. (2007) The art and practice of systems biology in medicine: mapping patterns of relationships. J. Proteome Res. 6(4):1540–1559.PubMedCrossRefGoogle Scholar
  6. 6.
    Wang G, Wu WW, Zeng W, Chou CL, Shen RF. Label-free protein quantification using LC-coupled ion trap or FT mass spectrometry: Reproducibility, linearity, and application with complex proteomes. J Proteome Res 2006;5(5):1214-23.Google Scholar
  7. 7.
    Wang, W., Zhou, H., Lin, H., et al. (2003) Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal. Chem. 75(18), 4818–4826.PubMedCrossRefGoogle Scholar
  8. 8.
    Mischak, H. A. R., Banks, R. E, Conaway, M., Coon, J. J., Dominiczak, A., Ehrich, J. H. H., Fliser, D., Girolami, M., Goodsaid, F., Hermjakob, H., Hochstrasser, D., Jankowskii, J., Julian, B. A., Kolch, W., Massy, Z. A., Neusuess, C., Novak, J., Peter, K., Rossing, K., Schanstra, J., Semmes, O.J., Theodorescu, D., Thongboonkerd, V., Weissinger, E. M., Van Eyk, J. E., and Yamamoto, T. (2007) Clinical proteomics: a need to define the field and to begin to set adequate standards. Proteomics Clin. Appl. 1, 148–156.PubMedCrossRefGoogle Scholar
  9. 9.
    Qian, W. J., Jacobs, J. M., Liu, T., Camp, D. G., 2nd, Smith, R. D. (2006) Advances and challenges in liquid chromatography-mass spectrometry-based proteomics profiling for clinical applications. Mol. Cell Proteomics 5(10), 1727–1744.PubMedCrossRefGoogle Scholar
  10. 10.
    Old, W. M., Meyer-Arendt, K., Aveline-Wolf, L., et al. (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics* S. Mol. Cell. Proteomics 4(10):1487–1502.PubMedCrossRefGoogle Scholar
  11. 11.
    Carr, S., Aebersold, R., Baldwin, M., Burlingame, A., Clauser, K., Nesvizhskii, A. (2004) The need for guidelines in publication of peptide and protein identification data. Working Group on Publication Guidelines for Peptide and Protein Identification Data*. Mol. Cell. Proteomics, 3, 531–533.Google Scholar
  12. 12.
    Wilkins, M. R., Appel, R. D., Van Eyk, J. E., et al. (2006) Guidelines for the next 10 years of proteomics. Proteomics 6(1), 4–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Li, G. H, V., Silva, J., Golick, D., Gorenstein, M., Geromanos, S. (2008) Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics, 9, 1696–1719.Google Scholar
  14. 14.
    Geromanos, S. J. VH, Silva, J., Dorschel, C., Guo-Zhong, L., Gorenstein, M., Bateman, R., Langridge, J. (2008) The detection, correlation and comparison of peptide precursor and products ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics, 9, 1683–1695.Google Scholar
  15. 15.
    Schwarz, E., Levin, Y., Wang, L., Leweke, F. M., Bahn, S. (2007) Peptide correlation: a means to identify high-quality quantitative information in large-scale proteomic studies. J. Sep. Sci. 30(14), 2190–2197.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yishai Levin
    • 1
  • Sabine Bahn
    • 2
  1. 1.Institute of BiotechnologyUniversity of CambridgeCambridgeUK
  2. 2.Institute of BiotechnologyUniversity of CambridgeCambridgeUK

Personalised recommendations