Approaches and Applications of Quantitative LC-MS for Proteomics and Activitomics

  • Pedro R. Cutillas
  • John F. Timms
Part of the Methods in Molecular Biology book series (MIMB, volume 658)


LC-MS is a powerful technique in biomolecular research. In addition to its uses as a tool for protein and peptide quantization, LC-MS can also be used to quantify the activity of signalling and metabolic pathways in a multiplex and comprehensive manner, i.e. as an ‘activitomic’ tool. Taking cancer research as an illustrative example of application, this review discusses the concepts of biochemical pathway analysis using LC-MS-based proteomic and activitomic techniques.

Key words

Mass spectrometry proteomics metabolomics lipidomics activitomics quantification 


  1. 1.
    Greis, K. D. (2007) Mass spectrometry for enzyme assays and inhibitor screening: an emerging application in pharmaceutical research. Mass Spectrom. Rev. 26, 324–339.PubMedCrossRefGoogle Scholar
  2. 2.
    Cutillas, P. R., Khwaja, A., Graupera, M., Pearce, W., Gharbi, S., Waterfield, M., and Vanhaesebroeck, B. (2006) Ultrasensitive and absolute quantification of the phosphoinositide 3-kinase/Akt signal transduction pathway by mass spectrometry. Proc. Natl. Acad. Sci. USA 103, 8959–8964.PubMedCrossRefGoogle Scholar
  3. 3.
    Cascante, M., Boros, L. G., Comin-Anduix, B., de Atauri, P., Centelles, J. J., and Lee, P. W. (2002) Metabolic control analysis in drug discovery and disease. Nat. Biotechnol. 20, 243–249.PubMedCrossRefGoogle Scholar
  4. 4.
    Comin-Anduix, B., Boren, J., Martinez, S., Moro, C., Centelles, J. J., Trebukhina, R., Petushok, N., Lee, W. N., Boros, L. G., and Cascante, M. (2001) The effect of thiamine supplementation on tumour proliferation. A metabolic control analysis study. Eur. J. Biochem. 268, 4177–4182.PubMedCrossRefGoogle Scholar
  5. 5.
    Guha, U., Chaerkady, R., Marimuthu, A., Patterson, A. S., Kashyap, M. K., Harsha, H. C., Sato, M., Bader, J. S., Lash, A. E., Minna, J. D., Pandey, A., and Varmus, H. E. (2008) Comparisons of tyrosine phosphorylated proteins in cells expressing lung cancer-specific alleles of EGFR and KRAS. Proc. Natl. Acad. Sci. USA 105, 14112–14117.PubMedCrossRefGoogle Scholar
  6. 6.
    Kim, J. E., and White, F. M. (2006) Quantitative analysis of phosphotyrosine signaling networks triggered by CD3 and CD28 costimulation in Jurkat cells. J. Immunol. 176, 2833–2843.PubMedGoogle Scholar
  7. 7.
    Kruger, M., Kratchmarova, I., Blagoev, B., Tseng, Y. H., Kahn, C. R., and Mann, M. (2008) Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proc. Natl. Acad. Sci. USA 105, 2451–2456.PubMedCrossRefGoogle Scholar
  8. 8.
    Larive, R. M., Urbach, S., Poncet, J., Jouin, P., Mascre, G., Sahuquet, A., Mangeat, P. H., Coopman, P. J., and Bettache, N. (2009) Phosphoproteomic analysis of Syk kinase signaling in human cancer cells reveals its role in cell–cell adhesion. Oncogene 28(24), 2337–2347.Google Scholar
  9. 9.
    Olsen, J. V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., and Mann, M. (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648.PubMedCrossRefGoogle Scholar
  10. 10.
    Rikova, K., Guo, A., Zeng, Q., Possemato, A., Yu, J., Haack, H., Nardone, J., Lee, K., Reeves, C., Li, Y., Hu, Y., Tan, Z., Stokes, M., Sullivan, L., Mitchell, J., Wetzel, R., Macneill, J., Ren, J. M., Yuan, J., Bakalarski, C. E., Villen, J., Kornhauser, J. M., Smith, B., Li, D., Zhou, X., Gygi, S. P., Gu, T. L., Polakiewicz, R. D., Rush, J., and Comb, M. J. (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190–1203.PubMedCrossRefGoogle Scholar
  11. 11.
    Rush, J., Moritz, A., Lee, K. A., Guo, A., Goss, V. L., Spek, E. J., Zhang, H., Zha, X. M., Polakiewicz, R. D., and Comb, M. J. (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol. 23, 94–101.PubMedCrossRefGoogle Scholar
  12. 12.
    Trinidad, J. C., Specht, C. G., Thalhammer, A., Schoepfer, R., and Burlingame, A. L. (2006) Comprehensive identification of phosphorylation sites in postsynaptic density preparations. Mol. Cell. Proteomics 5, 914–922.PubMedCrossRefGoogle Scholar
  13. 13.
    Villen, J., and Gygi, S. P. (2008) The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat. Protoc. 3, 1630–1638.PubMedCrossRefGoogle Scholar
  14. 14.
    Lienhard, G. E. (2008) Non-functional phosphorylations? Trends Biochem. Sci. 33, 351–352.PubMedCrossRefGoogle Scholar
  15. 15.
    Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., Hunter, C., Bignell, G., Davies, H., Teague, J., Butler, A., Stevens, C., Edkins, S., O'Meara, S., Vastrik, I., Schmidt, E. E., Avis, T., Barthorpe, S., Bhamra, G., Buck, G., Choudhury, B., Clements, J., Cole, J., Dicks, E., Forbes, S., Gray, K., Halliday, K., Harrison, R., Hills, K., Hinton, J., Jenkinson, A., Jones, D., Menzies, A., Mironenko, T., Perry, J., Raine, K., Richardson, D., Shepherd, R., Small, A., Tofts, C., Varian, J., Webb, T., West, S., Widaa, S., Yates, A., Cahill, D. P., Louis, D. N., Goldstraw, P., Nicholson, A. G., Brasseur, F., Looijenga, L., Weber, B. L., Chiew, Y. E., DeFazio, A., Greaves, M. F., Green, A. R., Campbell, P., Birney, E., Easton, D. F., Chenevix-Trench, G., Tan, M. H., Khoo, S. K., Teh, B. T., Yuen, S. T., Leung, S. Y., Wooster, R., Futreal, P. A., and Stratton, M. R. (2007) Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158.PubMedCrossRefGoogle Scholar
  16. 16.
    Sawyers, C. L. (2008) The cancer biomarker problem. Nature 452, 548–552.PubMedCrossRefGoogle Scholar
  17. 17.
    Miller, M. L., Jensen, L. J., Diella, F., Jorgensen, C., Tinti, M., Li, L., Hsiung, M., Parker, S. A., Bordeaux, J., Sicheritz-Ponten, T., Olhovsky, M., Pasculescu, A., Alexander, J., Knapp, S., Blom, N., Bork, P., Li, S., Cesareni, G., Pawson, T., Turk, B. E., Yaffe, M. B., Brunak, S., and Linding, R. (2008) Linear motif atlas for phosphorylation-dependent signaling. Sci. Signal. 1, ra2.PubMedCrossRefGoogle Scholar
  18. 18.
    Linding, R., Jensen, L. J., Pasculescu, A., Olhovsky, M., Colwill, K., Bork, P., Yaffe, M. B., and Pawson, T. (2008) NetworKIN: a resource for exploring cellular phosphorylation networks. Nucleic Acids Res. 36, D695–D699.PubMedCrossRefGoogle Scholar
  19. 19.
    Linding, R., Jensen, L. J., Ostheimer, G. J., van Vugt, M. A., Jorgensen, C., Miron, I. M., Diella, F., Colwill, K., Taylor, L., Elder, K., Metalnikov, P., Nguyen, V., Pasculescu, A., Jin, J., Park, J. G., Samson, L. D., Woodgett, J. R., Russell, R. B., Bork, P., Yaffe, M. B., and Pawson, T. (2007) Systematic discovery of in vivo phosphorylation networks. Cell 129, 1415–1426.PubMedCrossRefGoogle Scholar
  20. 20.
    Metz, T. O., Page, J. S., Baker, E. S., Tang, K., Ding, J., Shen, Y., and Smith, R. D. (2008) High resolution separations and improved ion production and transmission in metabolomics. Trends Anal. Chem. 27, 205–214.CrossRefGoogle Scholar
  21. 21.
    Metz, T. O., Zhang, Q., Page, J. S., Shen, Y., Callister, S. J., Jacobs, J. M., and Smith, R. D. (2007) The future of liquid chromatography–mass spectrometry (LC-MS) in metabolic profiling and metabolomic studies for biomarker discovery. Biomark. Med. 1, 159–185.PubMedCrossRefGoogle Scholar
  22. 22.
    Elstrom, R. L., Bauer, D. E., Buzzai, M., Karnauskas, R., Harris, M. H., Plas, D. R., Zhuang, H., Cinalli, R. M., Alavi, A., Rudin, C. M., and Thompson, C. B. (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 64, 3892–3899.PubMedCrossRefGoogle Scholar
  23. 23.
    Vizan, P., Boros, L. G., Figueras, A., Capella, G., Mangues, R., Bassilian, S., Lim, S., Lee, W. N., and Cascante, M. (2005) K-ras codon-specific mutations produce distinctive metabolic phenotypes in NIH3T3 mice [corrected] fibroblasts. Cancer Res. 65, 5512–5515.PubMedCrossRefGoogle Scholar
  24. 24.
    Wise, D. R., DeBerardinis, R. J., Mancuso, A., Sayed, N., Zhang, X. Y., Pfeiffer, H. K., Nissim, I., Daikhin, E., Yudkoff, M., McMahon, S. B., and Thompson, C. B. (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl. Acad. Sci. USA 105, 18782–18787.PubMedCrossRefGoogle Scholar
  25. 25.
    Sreekumar, A., Poisson, L. M., Rajendiran, T. M., Khan, A. P., Cao, Q., Yu, J., Laxman, B., Mehra, R., Lonigro, R. J., Li, Y., Nyati, M. K., Ahsan, A., Kalyana-Sundaram, S., Han, B., Cao, X., Byun, J., Omenn, G. S., Ghosh, D., Pennathur, S., Alexander, D. C., Berger, A., Shuster, J. R., Wei, J. T., Varambally, S., Beecher, C., and Chinnaiyan, A. M. (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 910–914.PubMedCrossRefGoogle Scholar
  26. 26.
    Bi, X., Lin, Q., Foo, T. W., Joshi, S., You, T., Shen, H. M., Ong, C. N., Cheah, P. Y., Eu, K. W., and Hew, C. L. (2006) Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways: mechanism of tumorigenesis. Mol. Cell. Proteomics 5, 1119–1130.PubMedCrossRefGoogle Scholar
  27. 27.
    Chan, E. C., Koh, P. K., Mal, M., Cheah, P. Y., Eu, K. W., Backshall, A., Cavill, R., Nicholson, J. K., and Keun, H. C. (2009) Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J. Proteome Res. 8, 352–361.PubMedCrossRefGoogle Scholar
  28. 28.
    Parsons, D. W., Wang, T. L., Samuels, Y., Bardelli, A., Cummins, J. M., DeLong, L., Silliman, N., Ptak, J., Szabo, S., Willson, J. K., Markowitz, S., Kinzler, K. W., Vogelstein, B., Lengauer, C., and Velculescu, V. E. (2005) Colorectal cancer: mutations in a signalling pathway. Nature 436, 792.PubMedCrossRefGoogle Scholar
  29. 29.
    Wakelam, M. J., Pettitt, T. R., and Postle, A. D. (2007) Lipidomic analysis of signaling pathways. Methods Enzymol. 432, 233–246.PubMedCrossRefGoogle Scholar
  30. 30.
    Engelman, J. A., Luo, J., and Cantley, L. C. (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 7, 606–619.PubMedCrossRefGoogle Scholar
  31. 31.
    Yuan, T. L., and Cantley, L. C. (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27, 5497–5510.PubMedCrossRefGoogle Scholar
  32. 32.
    Carpenter, C. L., and Cantley, L. C. (1990) Phosphoinositide kinases. Biochemistry 29, 11147–11156.PubMedCrossRefGoogle Scholar
  33. 33.
    Fruman, D. A., Meyers, R. E., and Cantley, L. C. (1998) Phosphoinositide kinases. Annu. Rev. Biochem. 67, 481–507.PubMedCrossRefGoogle Scholar
  34. 34.
    Niggli, V. (2005) Regulation of protein activities by phosphoinositide phosphates. Annu. Rev. Cell. Dev. Biol. 21, 57–79.PubMedCrossRefGoogle Scholar
  35. 35.
    Pettitt, T. R., Dove, S. K., Lubben, A., Calaminus, S. D., and Wakelam, M. J. (2006) Analysis of intact phosphoinositides in biological samples. J. Lipid Res. 47, 1588–1596.PubMedCrossRefGoogle Scholar
  36. 36.
    Milne, S. B., Ivanova, P. T., DeCamp, D., Hsueh, R. C., and Brown, H. A. (2005) A targeted mass spectrometric analysis of phosphatidylinositol phosphate species. J. Lipid Res. 46, 1796–1802.PubMedCrossRefGoogle Scholar
  37. 37.
    Mann, M., Hendrickson, R. C., and Pandey, A. (2001) Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem. 70, 437–473.PubMedCrossRefGoogle Scholar
  38. 38.
    Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730.PubMedGoogle Scholar
  39. 39.
    Cox, J., and Mann, M. (2007) Is proteomics the new genomics? Cell 130, 395–398.PubMedCrossRefGoogle Scholar
  40. 40.
    Brunet, S., Thibault, P., Gagnon, E., Kearney, P., Bergeron, J. J., and Desjardins, M. (2003) Organelle proteomics: looking at less to see more. Trends Cell. Biol. 13, 629–638.PubMedCrossRefGoogle Scholar
  41. 41.
    Dreger, M. (2003) Subcellular proteomics. Mass Spectrom. Rev. 22, 27–56.PubMedCrossRefGoogle Scholar
  42. 42.
    Robinson, C. V., Sali, A., and Baumeister, W. (2007) The molecular sociology of the cell. Nature 450, 973–982.PubMedCrossRefGoogle Scholar
  43. 43.
    Taylor, S. W., Fahy, E., and Ghosh, S. S. (2003) Global organellar proteomics. Trends Biotechnol. 21, 82–88.PubMedCrossRefGoogle Scholar
  44. 44.
    Yates, J. R., 3rd, Gilchrist, A., Howell, K. E., and Bergeron, J. J. (2005) Proteomics of organelles and large cellular structures. Nat. Rev. Mol. Cell. Biol. 6, 702–714.PubMedCrossRefGoogle Scholar
  45. 45.
    Andersen, J. S., Wilkinson, C. J., Mayor, T., Mortensen, P., Nigg, E. A., and Mann, M. (2003) Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574.PubMedCrossRefGoogle Scholar
  46. 46.
    Fabbro, M., Zhou, B. B., Takahashi, M., Sarcevic, B., Lal, P., Graham, M. E., Gabrielli, B. G., Robinson, P. J., Nigg, E. A., Ono, Y., and Khanna, K. K. (2005) Cdk1/Erk2- and Plk1-dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis. Dev. Cell 9, 477–488.PubMedCrossRefGoogle Scholar
  47. 47.
    Guarguaglini, G., Duncan, P. I., Stierhof, Y. D., Holmstrom, T., Duensing, S., and Nigg, E. A. (2005) The forkhead-associated domain protein Cep170 interacts with Polo-like kinase 1 and serves as a marker for mature centrioles. Mol. Biol. Cell 16, 1095–1107.PubMedCrossRefGoogle Scholar
  48. 48.
    Graser, S., Stierhof, Y. D., and Nigg, E. A. (2007) Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion. J. Cell Sci. 120, 4321–4331.PubMedCrossRefGoogle Scholar
  49. 49.
    Yan, X., Habedanck, R., and Nigg, E. A. (2006) A complex of two centrosomal proteins, CAP350 and FOP, cooperates with EB1 in microtubule anchoring. Mol. Biol. Cell 17, 634–644.PubMedCrossRefGoogle Scholar
  50. 50.
    Dunkley, T. P., Watson, R., Griffin, J. L., Dupree, P., and Lilley, K. S. (2004) Localization of organelle proteins by isotope tagging (LOPIT). Mol. Cell. Proteomics 3, 1128–1134.PubMedCrossRefGoogle Scholar
  51. 51.
    Foster, L. J., de Hoog, C. L., Zhang, Y., Xie, X., Mootha, V. K., and Mann, M. (2006) A mammalian organelle map by protein correlation profiling. Cell 125, 187–199.PubMedCrossRefGoogle Scholar
  52. 52.
    Sadowski, P. G., Dunkley, T. P., Shadforth, I. P., Dupree, P., Bessant, C., Griffin, J. L., and Lilley, K. S. (2006) Quantitative proteomic approach to study subcellular localization of membrane proteins. Nat. Protoc. 1, 1778–1789.PubMedCrossRefGoogle Scholar
  53. 53.
    Tan, D. J., Dvinge, H., Christoforou, A., Bertone, P., Martinez Arias, A., and Lilley, K. S. (2009) Mapping organelle proteins and protein complexes in Drosophila melanogaster. J Proteome Res. 8(6), 2667–2678.Google Scholar
  54. 54.
    Cutillas, P. R., Biber, J., Marks, J., Jacob, R., Stieger, B., Cramer, R., Waterfield, M., Burlingame, A. L., and Unwin, R. J. (2005) Proteomic analysis of plasma membrane vesicles isolated from the rat renal cortex. Proteomics 5, 101–112.PubMedCrossRefGoogle Scholar
  55. 55.
    Abu-Farha, M., Elisma, F., and Figeys, D. (2008) Identification of protein–protein interactions by mass spectrometry coupled techniques. Adv. Biochem. Eng. Biotechnol. 110, 67–80.PubMedGoogle Scholar
  56. 56.
    Kocher, T., and Superti-Furga, G. (2007) Mass spectrometry-based functional proteomics: from molecular machines to protein networks. Nat. Methods 4, 807–815.PubMedCrossRefGoogle Scholar
  57. 57.
    Lee, W. C., and Lee, K. H. (2004) Applications of affinity chromatography in proteomics. Anal. Biochem. 324, 1–10.PubMedCrossRefGoogle Scholar
  58. 58.
    Simpson, R. J., and Dorow, D. S. (2001) Cancer proteomics: from signaling networks to tumor markers. Trends Biotechnol. 19, S40–S48.PubMedCrossRefGoogle Scholar
  59. 59.
    Yarmush, M. L., and Jayaraman, A. (2002) Advances in proteomic technologies. Annu. Rev. Biomed. Eng. 4, 349–373.PubMedCrossRefGoogle Scholar
  60. 60.
    Christofk, H. R., Vander Heiden, M. G., Wu, N., Asara, J. M., and Cantley, L. C. (2008) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452, 181–186.PubMedCrossRefGoogle Scholar
  61. 61.
    Christofk, H. R., Vander Heiden, M. G., Harris, M. H., Ramanathan, A., Gerszten, R. E., Wei, R., Fleming, M. D., Schreiber, S. L., and Cantley, L. C. (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233.PubMedCrossRefGoogle Scholar
  62. 62.
    Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030–1032.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Pedro R. Cutillas
    • 1
  • John F. Timms
    • 2
  1. 1.Analytical Signalling Group, Centre for Cell SignallingInstitute of Cancer, Bart’s and the London School of Medicine, Queen Mary University of LondonLondonUK
  2. 2.Cancer Proteomics LaboratoryEGA Institute for Women’s Health, University College LondonLondonUK

Personalised recommendations