Skip to main content

The CRE/lox System as a Tool for Developmental Studies at the Cell and Tissue Level

  • Protocol
  • First Online:
Plant Developmental Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 655))

Abstract

Targeted gene manipulation has been used in the last few decades for better understanding of gene function. Most often mutant or overexpression genotypes are analyzed, but in many cases these are not sufficient to obtain a detailed picture on the mode of action of the corresponding protein. For example, many mutations result in pleiotropic or early phenotypic effects thereby affecting the whole organism. Conditional complementation or deletion of the gene under study in a specific cell or tissue can elucidate its exact role in a specific region within a certain time frame. Implementation of several site-specific recombination systems such as CRE/lox has created powerful tools to study the role of many genes at the cellular level. In this chapter, we describe in detail protocols for the application of a two-vector based CRE/lox system, enabling controlled timing and position of gain or loss of function clonal analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kolb, A. F. (2002) Genome engineering using site-specific recombinases. Cloning Stem Cells 4, 65–80.

    Article  PubMed  CAS  Google Scholar 

  2. Wirth1, D., Gama-Norton, L., Riemer, P., Sandhu1, U., Schucht, R., and Hauser, H. (2007) Road to precision: recombinase-based targeting technologies for genome engineering. Curr Opin Biotechnol 18, 411–419.

    Google Scholar 

  3. Sieburth, L. E., Drews, G. N., and Meyerowitz, E. M. (1998) Non-autonomy of AGAMOUS function in flower development: use of a Cre/loxP method for mosaic analysis in Arabidopsis. Development 125, 4303–4312.

    PubMed  CAS  Google Scholar 

  4. Becraft, P. W., Kang, S., and Suh, S. (2001) The Maize CRINKLY4 receptor kinase controls a cell-autonomous differentiation response. Plant Physiol 127, 486–496.

    Article  PubMed  CAS  Google Scholar 

  5. Maedaa, M., Namikawaa, K., Kobayashia, I., Ohbaa, N., Takaharaa, Y., Kadonoa, C., Tanakab, A., and Kiyamaa, H. (2006) Targeted gene therapy toward astrocytoma using a Cre/loxP-based adenovirus system. Brain Res 1081, 34–43.

    Article  Google Scholar 

  6. Zinyk, D. L., Mercer, E. H., Harris, E., Anderson, D. J., and Joyner, A. L. (1998) Fate mapping of the mouse midbrain–hindbrain constriction using a site-specific recombination system. Curr Biol 8, 665–668.

    Article  PubMed  CAS  Google Scholar 

  7. Saulsberry, A., Martin P. R., O’Brien, T., Sieburth, L. E., and Pickett, F. Bryan. (2002) The induced sector Arabidopsis apical embryonic fate map. Development 129, 3403–3410.

    PubMed  CAS  Google Scholar 

  8. Srivastava, V. and Ow, D. W. (2004) Marker-free site-specific gene integration in plants. Trends Biotechnol 22, 627–629.

    Google Scholar 

  9. Craig, N. L. (1988) The mechanism of conservative site-specific recombination. Annu Rev Genet 22, 77–105.

    Article  PubMed  CAS  Google Scholar 

  10. Nash, H. A. (1981). Integration and excision of bacteriophage λ: The mechanism of conservative site specific recombination. Annu Rev Genet 15, 143–167.

    Article  PubMed  CAS  Google Scholar 

  11. Volkert, F. C. and Broach, J. R. (1980) Site-Specific Recombination promotes plasmid amplification in yeast. Cell 46, 541–550.

    Article  Google Scholar 

  12. Sternberg, N. and Hoess, R. (1983) The molecular genetics of bacteriophage P1. Annu Rev Genet 17, 123–154.

    Article  PubMed  CAS  Google Scholar 

  13. Osborne, B. I. and Baker, B. (1995) Movers and shakers: maize transposons as tools for analyzing other plant genomes. Curr Opin Cell Biol 7, 406–413.

    Article  PubMed  CAS  Google Scholar 

  14. Sternberg, K. and Hamiltons, D. (1981) Bacteriophage Pl site-specific recombination. J Mol Boil 150, 467–486.

    Article  CAS  Google Scholar 

  15. Hoess, R. H., Ziese, M., and Sternberg, N. (1982) P1 site-specific recombination: Nucleotide sequence of the recombining sites. Proc Natl Acad Sci USA 79, 3398–3402.

    Article  PubMed  CAS  Google Scholar 

  16. Hoess, R. H. and Abremski, K. (1985) Mechanism of strand cleavage and exchange in the Cre-lox site-specific recombination system. J Mol Biol 181, 351–362.

    Article  PubMed  CAS  Google Scholar 

  17. Mack, A., Sauer, B., Abremski, K., and Hoess, R. (1992) Stoichiometry of the Cre recombinase bound to the lox recombining site. Nucleic Acids Res 20, 4451–4455.

    Article  PubMed  CAS  Google Scholar 

  18. Lee, L. and Sadowski, P. D. (2003) Sequence of the loxP Site determines the order of strand exchange by the Cre recombinase. J Mol Biol 326, 397–412.

    Article  PubMed  CAS  Google Scholar 

  19. Holliday, R. A. (1964) Mechanism of gene conversion in fungi. Genet Res 5, 282–304.

    Article  Google Scholar 

  20. Xu, T. and Rubin, G. M. (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237.

    PubMed  CAS  Google Scholar 

  21. Heidstra, R., Welch, D., and Scheres, B. (2004) Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes Dev 18, 1964–1969.

    Article  PubMed  CAS  Google Scholar 

  22. Misawa, N., Yamano, S., Linden, H., de Felipe, M. R., Lucas, M., Ikenaga, H., and Sandmann, G. (1993) Functional expression of the Erwinia uredovora carotenoid biosynthesis gene crtl in transgenic plants showing an increase of beta-carotene biosynthesis activity and resistance to the bleaching herbicide Norflurazon. Plant J 4, 833–840.

    Article  PubMed  CAS  Google Scholar 

  23. Brocard, J., Feil, R., Chambon, P., and Metzger, D. (1998) A chimeric Cre recombinase inducible by synthetic, but not by natural ligands of the glucocorticoid receptor. Nucleic Acids Res 26, 4086–4090.

    Article  PubMed  CAS  Google Scholar 

  24. Hellens, R. P., Edwards, E. A., Leyland N. R., Bean, S., and Mullineaux, P. M. (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42, 819–832.

    Article  PubMed  CAS  Google Scholar 

  25. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd edition, Volume 1, 2, 3. Cold Spring Harbor Laboratories Press, New York, NY.

    Google Scholar 

  26. Clough, S. J. and Bent, A. F. (1998) Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735–743.

    Article  PubMed  CAS  Google Scholar 

  27. Serralbo, O., Pérez-Pérez, J. M., Heidstra, R., and Scheres, B. (2006) Non-cell-autonomous rescue of anaphase-promoting complex function revealed by mosaic analysis of HOBBIT, an Arabidopsis CDC27 homolog. Proc Natl Acad Sci USA 103, 13250–13255.

    Article  PubMed  CAS  Google Scholar 

  28. Hoff, T., Schnorr1, K. M., and Mundy, J. (2001) A recombinase-mediated transcriptional induction system in transgenic plants. Plant Mol Biol 45, 41–49.

    Google Scholar 

  29. Mlynarova, L. and Nap, J. (2003) A self-excising Cre recombinase allows efficient recombination of multiple ectopic heterospecific lox sites in transgenic tobacco. Transgenic Res 12, 45–57.

    Article  PubMed  CAS  Google Scholar 

  30. Livet, J., Weissman, T. A., Kang, H., Draft, R. W., Lu, J., Bennis, R. A., Sanes, J. R., and Lichtman, J. W. (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62.

    Article  PubMed  CAS  Google Scholar 

  31. Gheysen, G., Van Montagu, M., and Zambryski, P. (1987) Integration of Agrobacterium tumefaciens Transfer DNA (T-DNA) Involves Rearrangements of Target Plant DNA Sequences. Proc Natl Acad Sci USA 84, 6169–6173.

    Article  PubMed  CAS  Google Scholar 

  32. Harris, J., Honigberg, L., Robinson, N., and Kenyon, C. (1996) Neuronal cell migration in C. elegans: regulation of Hox gene expression and cell position. Development 12, 3117–3131.

    Google Scholar 

  33. Kurup, S., Runions, J., Köhler, U., Laplaze, L., Hodge, S., and Haseloff, J. (2005) Marking cell lineages in living tissues. Plant J 42, 444–453.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to René Benjamins for critical reading, Jose Manuel Perez-Perez and Olivier Serralbo for valuable discussions, critical reading, and sharing data.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wachsman, G., Heidstra, R. (2010). The CRE/lox System as a Tool for Developmental Studies at the Cell and Tissue Level. In: Hennig, L., Köhler, C. (eds) Plant Developmental Biology. Methods in Molecular Biology, vol 655. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-765-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-765-5_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-764-8

  • Online ISBN: 978-1-60761-765-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics