Skip to main content

Silencing of Gene Expression by Targeted DNA Methylation: Concepts and Approaches

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 649))

Abstract

Targeted DNA methylation is a novel and attractive approach for stable silencing of gene expression by epigenetic mechanisms. The potential applications of this concept include cancer treatment, treatment of viral infections and, in general, treatment of any disease that could be attenuated by the stable repression of known target genes. We review the literature on targeted DNA methylation and gene silencing, summarize the achievements and the challenges that remain, and discuss technical issues critical for this approach.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Allis, C.D., Jenuwein, T., and Reinberg, D. (2007) Epigenetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  2. Goll, M.G. and Bestor, T.H. (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 74, 481–514.

    Article  PubMed  CAS  Google Scholar 

  3. Hermann, A., Gowher, H., and Jeltsch, A. (2004) Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci. 61, 2571–2587.

    Article  PubMed  CAS  Google Scholar 

  4. Klose, R.J. and Bird, A.P. (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 31, 89–97.

    Article  PubMed  CAS  Google Scholar 

  5. Jeltsch, A. (2006) On the enzymatic properties of Dnmt1: specificity, processivity, mechanism of linear diffusion and allosteric regulation of the enzyme. Epigenetics. 1, 63–66.

    Article  PubMed  Google Scholar 

  6. Gowher, H. and Jeltsch, A. (2001) Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse: the enzyme modifies DNA in a non-processive manner and also methylates non-CpG sites. J Mol Biol. 309, 1201–1208.

    Article  PubMed  CAS  Google Scholar 

  7. Okano, M., Xie, S., and Li, E. (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 19, 219–220.

    Article  PubMed  CAS  Google Scholar 

  8. Okano, M., Bell, D.W., Haber, D.A., and Li, E. (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 99, 247–257.

    Article  PubMed  CAS  Google Scholar 

  9. Fatemi, M., Hermann, A., Pradhan, S., and Jeltsch, A. (2001) The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA. J Mol Biol. 309, 1189–1199.

    Article  PubMed  CAS  Google Scholar 

  10. Handa, V. and Jeltsch, A. (2005) Profound flanking sequence preference of Dnmt3a and Dnmt3b mammalian DNA methyltransferases shape the human epigenome. J Mol Biol. 348, 1103–1112.

    Article  PubMed  CAS  Google Scholar 

  11. Gowher, H., Liebert, K., Hermann, A., Xu, G., and Jeltsch, A. (2005) Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. J. Biol. Chem. 280, 13341–13348.

    Article  PubMed  CAS  Google Scholar 

  12. Bourc’his, D., Xu, G.L., Lin, C.S., Bollman, B., and Bestor, T.H. (2001) Dnmt3L and the establishment of maternal genomic imprints. Science. 294, 2536–2539.

    Article  PubMed  Google Scholar 

  13. Hata, K., Okano, M., Lei, H., and Li, E. (2002) Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development. 129, 1983–1993.

    PubMed  CAS  Google Scholar 

  14. Jia, D., Jurkowska, R.Z., Zhang, X., Jeltsch, A., and Cheng, X. (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature. 449, 248–251.

    Article  PubMed  CAS  Google Scholar 

  15. Jurkowska, R.Z., Anspach, N., Urbanke, C., Jia, D., Reinhardt, R., Nellen, W., Cheng, X., and Jeltsch, A. (2008) Formation of nucleoprotein filaments by mammalian DNA methyltransferase Dnmt3a in complex with regulator Dnmt3L. Nucleic Acids Res. 36, 6656–6663.

    Article  PubMed  CAS  Google Scholar 

  16. Kass, S.U., Pruss, D., and Wolffe, A.P. (1997) How does DNA methylation repress transcription? Trends Genet. 13, 444–449.

    Article  PubMed  CAS  Google Scholar 

  17. Prendergast, G.C. and Ziff, E.B. (1991) Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science. 251, 186–189.

    Article  PubMed  CAS  Google Scholar 

  18. Bell, A.C. and Felsenfeld, G. (2000) Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature. 405, 482–485.

    Article  PubMed  CAS  Google Scholar 

  19. Sansom, O.J., Maddison, K., and Clarke, A.R. (2007) Mechanisms of disease: methyl-binding domain proteins as potential therapeutic targets in cancer. Nat Clin Pract Oncol. 4, 305–315.

    Article  PubMed  CAS  Google Scholar 

  20. Esteller, M. (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet. 8, 286–298.

    Article  PubMed  CAS  Google Scholar 

  21. Feinberg, A.P. (2007) Phenotypic plasticity and the epigenetics of human disease. Nature. 447, 433–440.

    Article  PubMed  CAS  Google Scholar 

  22. Feinberg, A.P. and Tycko, B. (2004) The history of cancer epigenetics. Nat Rev Cancer. 4, 143–153.

    Article  PubMed  CAS  Google Scholar 

  23. Jones, P.A. and Baylin, S.B. (2007) The epigenomics of cancer. Cell. 128, 683–692.

    Article  PubMed  CAS  Google Scholar 

  24. Robertson, K.D. (2005) DNA methylation and human disease. Nat Rev Genet. 6, 597–610.

    Article  PubMed  CAS  Google Scholar 

  25. Fuks, F., Burgers, W.A., Godin, N., Kasai, M., and Kouzarides, T. (2001) Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J. 20, 2536–2544.

    Article  PubMed  CAS  Google Scholar 

  26. Wang, Y.A., Kamarova, Y., Shen, K.C., Jiang, Z., Hahn, M.J., Wang, Y., and Brooks, S.C. (2005) DNA methyltransferase-3a interacts with p53 and represses p53-mediated gene expression. Cancer Biol Ther. 4, 1138–1143.

    Article  PubMed  CAS  Google Scholar 

  27. Di Croce, L., Raker, V.A., Corsaro, M., Fazi, F., Fanelli, M., Faretta, M., Fuks, F., Lo Coco, F., Kouzarides, T., Nervi, C., Minucci, S., and Pelicci, P.G. (2002) Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science. 295, 1079–1082.

    Article  PubMed  CAS  Google Scholar 

  28. Li, H., Rauch, T., Chen, Z.X., Szabo, P.E., Riggs, A.D., and Pfeifer, G.P. (2006) The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells. J Biol Chem. 281, 19489–19500.

    Article  PubMed  CAS  Google Scholar 

  29. Vire, E., Brenner, C., Deplus, R., Blanchon, L., Fraga, M., Didelot, C., Morey, L., Van Eynde, A., Bernard, D., Vanderwinden, J.M., Bollen, M., Esteller, M., Di Croce, L., de Launoit, Y., and Fuks, F. (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 439, 871–874.

    Article  PubMed  CAS  Google Scholar 

  30. Shamay, M., Krithivas, A., Zhang, J., and Hayward, S.D. (2006) Recruitment of the de novo DNA methyltransferase Dnmt3a by Kaposi’s sarcoma-associated herpesvirus LANA. Proc Natl Acad Sci USA. 103, 14554–14559.

    Article  PubMed  CAS  Google Scholar 

  31. Datta, J., Majumder, S., Bai, S., Ghoshal, K., Kutay, H., Smith, D.S., Crabb, J.W., and Jacob, S.T. (2005) Physical and functional interaction of DNA methyltransferase 3A with Mbd3 and Brg1 in mouse lymphosarcoma cells. Cancer Res. 65, 10891–10900.

    Article  PubMed  CAS  Google Scholar 

  32. Xu, G.L. and Bestor, T.H. (1997) Cytosine methylation targeted to pre-determined sequences. Nat Genet. 17, 376–378.

    Article  PubMed  CAS  Google Scholar 

  33. Carvin, C.D., Dhasarathy, A., Friesenhahn, L.B., Jessen, W.J., and Kladde, M.P. (2003) Targeted cytosine methylation for in vivo detection of protein-DNA interactions. Proc Natl Acad Sci USA. 100, 7743–7748.

    Article  PubMed  CAS  Google Scholar 

  34. Carvin, C.D., Parr, R.D., and Kladde, M.P. (2003) Site-selective in vivo targeting of cytosine-5 DNA methylation by zinc-finger proteins. Nucleic Acids Res. 31, 6493–6501.

    Article  PubMed  CAS  Google Scholar 

  35. Smith, A.E. and Ford, K.G. (2007) Specific targeting of cytosine methylation to DNA sequences in vivo. Nucleic Acids Res. 35, 740–754.

    Article  PubMed  CAS  Google Scholar 

  36. Nomura, W. and Barbas, C.F., 3rd. (2007) In vivo site-specific DNA methylation with a designed sequence-enabled DNA methylase. J Am Chem Soc 129, 8676–8677.

    Article  PubMed  CAS  Google Scholar 

  37. Posfai, G., Kim, S.C., Szilak, L., Kovacs, A., and Venetianer, P. (1991) Complementation by detached parts of GGCC-specific DNA methyltransferases. Nucleic Acids Res. 19, 4843–4847.

    Article  PubMed  CAS  Google Scholar 

  38. Kiss, A. and Weinhold, E. (2008) Functional reassembly of split enzymes on-site: a novel approach for highly sequence-specific targeted DNA methylation. Chembiochem. 9, 351–353.

    Article  PubMed  CAS  Google Scholar 

  39. Li, F., Papworth, M., Minczuk, M., Rohde, C., Zhang, Y., Ragozin, S., and Jeltsch, A. (2007) Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes. Nucleic Acids Res. 35, 100–112.

    Article  PubMed  Google Scholar 

  40. Gowher, H. and Jeltsch, A. (2002) Molecular enzymology of the catalytic domains of the Dnmt3a and Dnmt3b DNA methyltransferases. J Biol Chem. 277, 20409–20414.

    Article  PubMed  CAS  Google Scholar 

  41. Smith, A.E., Hurd, P.J., Bannister, A.J., Kouzarides, T., and Ford, K.G. (2008) Heritable gene repression through the action of a directed DNA methyltransferase at a chromosomal locus. J Biol Chem. 283, 9878–9885.

    Article  PubMed  CAS  Google Scholar 

  42. Minczuk, M., Papworth, M.A., Kolasinska, P., Murphy, M.P., and Klug, A. (2006) Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proc Natl Acad Sci USA. 103, 19689–19694.

    Article  PubMed  CAS  Google Scholar 

  43. Greil, F., Moorman, C., and van Steensel, B. (2006) DamID: mapping of in vivo protein-genome interactions using tethered DNA adenine methyltransferase. Methods Enzymol. 410, 342–359.

    Article  PubMed  CAS  Google Scholar 

  44. Wines, D.R., Talbert, P.B., Clark, D.V., and Henikoff, S. (1996) Introduction of a DNA methyltransferase into Drosophila to probe chromatin structure in vivo. Chromosoma. 104, 332–340.

    Article  PubMed  CAS  Google Scholar 

  45. de Wit, E., Greil, F., and van Steensel, B. (2005) Genome-wide HP1 binding in Drosophila: developmental plasticity and genomic targeting signals. Genome Res. 15, 1265–1273.

    Article  PubMed  Google Scholar 

  46. Orian, A., van Steensel, B., Delrow, J., Bussemaker, H.J., Li, L., Sawado, T., Williams, E., Loo, L.W., Cowley, S.M., Yost, C., Pierce, S., Edgar, B.A., Parkhurst, S.M., and Eisenman, R.N. (2003) Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev. 17, 1101–1114.

    Article  PubMed  CAS  Google Scholar 

  47. Song, S., Cooperman, J., Letting, D.L., Blobel, G.A., and Choi, J.K. (2004) Identification of cyclin D3 as a direct target of E2A using DamID. Mol Cell Biol. 24, 8790–8802.

    Article  PubMed  CAS  Google Scholar 

  48. van Steensel, B., Delrow, J., and Henikoff, S. (2001) Chromatin profiling using targeted DNA adenine methyltransferase. Nat Genet. 27, 304–308.

    Article  PubMed  Google Scholar 

  49. Reik, W. (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 447, 425–432.

    Article  PubMed  CAS  Google Scholar 

  50. Metivier, R., Gallais, R., Tiffoche, C., Le Peron, C., Jurkowska, R.Z., Carmouche, R.P., Ibberson, D., Barath, P., Demay, F., Reid, G., Benes, V., Jeltsch, A., Gannon, F., and Salbert, G. (2008) Cyclical DNA methylation of a transcriptionally active promoter. Nature. 452, 45–50.

    Article  PubMed  CAS  Google Scholar 

  51. Eckhardt, F., Lewin, J., Cortese, R., Rakyan, V.K., Attwood, J., Burger, M., Burton, J., Cox, T.V., Davies, R., Down, T.A., Haefliger, C., Horton, R., Howe, K., Jackson, D.K., Kunde, J., Koenig, C., Liddle, J., Niblett, D., Otto, T., Pettett, R., Seemann, S., Thompson, C., West, T., Rogers, J., Olek, A., Berlin, K., and Beck, S. (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet. 38, 1378–1385.

    Article  PubMed  CAS  Google Scholar 

  52. Meissner, A., Mikkelsen, T.S., Gu, H., Wernig, M., Hanna, J., Sivachenko, A., Zhang, X., Bernstein, B.E., Nusbaum, C., Jaffe, D.B., Gnirke, A., Jaenisch, R., and Lander, E.S. (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 454, 766–770.

    PubMed  CAS  Google Scholar 

  53. Weber, M., Hellmann, I., Stadler, M.B., Ramos, L., Paabo, S., Rebhan, M., and Schubeler, D. (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet. 39, 457–466.

    Article  PubMed  CAS  Google Scholar 

  54. Illingworth, R., Kerr, A., Desousa, D., Jorgensen, H., Ellis, P., Stalker, J., Jackson, D., Clee, C., Plumb, R., Rogers, J., Humphray, S., Cox, T., Langford, C., and Bird, A. (2008) A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol. 6, e22.

    Article  PubMed  Google Scholar 

  55. Keshet, I., Schlesinger, Y., Farkash, S., Rand, E., Hecht, M., Segal, E., Pikarski, E., Young, R.A., Niveleau, A., Cedar, H., and Simon, I. (2006) Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat Genet. 38, 149–153.

    Article  PubMed  CAS  Google Scholar 

  56. Rakyan, V.K., Down, T.A., Thorne, N.P., Flicek, P., Kulesha, E., Graf, S., Tomazou, E.M., Backdahl, L., Johnson, N., Herberth, M., Howe, K.L., Jackson, D.K., Miretti, M.M., Fiegler, H., Marioni, J.C., Birney, E., Hubbard, T.J., Carter, N.P., Tavare, S., and Beck, S. (2008) An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Res. 18, 1518–1529.

    Article  PubMed  CAS  Google Scholar 

  57. Weber, M., Davies, J.J., Wittig, D., Oakeley, E.J., Haase, M., Lam, W.L., and Schubeler, D. (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet. 37, 853–862.

    Article  PubMed  CAS  Google Scholar 

  58. Cokus, S.J., Feng, S., Zhang, X., Chen, Z., Merriman, B., Haudenschild, C.D., Pradhan, S., Nelson, S.F., Pellegrini, M., and Jacobsen, S.E. (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature. 452, 215–219.

    Article  PubMed  CAS  Google Scholar 

  59. Lister, R., O’Malley, R.C., Tonti-Filippini, J., Gregory, B.D., Berry, C.C., Millar, A.H., and Ecker, J.R. (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell. 133, 523–536.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory has been supported by the DFG and the Wilhelm Sander Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jurkowska, R.Z., Jeltsch, A. (2010). Silencing of Gene Expression by Targeted DNA Methylation: Concepts and Approaches. In: Mackay, J., Segal, D. (eds) Engineered Zinc Finger Proteins. Methods in Molecular Biology, vol 649. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-753-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-753-2_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-752-5

  • Online ISBN: 978-1-60761-753-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics