Skip to main content

In Vitro Assessment of Zinc Finger Nuclease Activity

  • Protocol
  • First Online:
Engineered Zinc Finger Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 649))

Abstract

The technical advances in developing artificial endonucleases, such as zinc finger nucleases (ZFNs), have opened a wide field of applications in the genome engineering arena, including the therapeutic correction of mutated genes in the human genome. Gene editing frequencies of up to 50% in human cells under non-selective conditions reveal the power of the ZFN technology. Activity and toxicity of ZFNs are determined by a number of parameters, including the specificity of DNA binding, the kinetics of dimerization of the two ZFN subunits, and the catalytic activity. In order to investigate these parameters individually, a cell-free system that models these reactions is essential. Here, we present a simple and fast method for the functional testing of ZFNs in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carroll, D. (2008) Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther. 15, 1463–1468.

    Article  PubMed  CAS  Google Scholar 

  2. Cathomen, T. and Joung, J.K. (2008) Zinc-finger nucleases: the next generation emerges. Mol Ther. 16, 1200–1207.

    Article  PubMed  CAS  Google Scholar 

  3. Vasquez, K.M., Marburger, K., Intody, Z., and Wilson, J.H. (2001) Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci USA. 98, 8403–8410.

    Article  PubMed  CAS  Google Scholar 

  4. Maeder, M.L., Thibodeau-Beganny, S., Osiak, A., Wright, D.A., Anthony, R.M., Eichtinger, M., Jiang, T., Foley, J.E., Winfrey, R.J., Townsend, J.A., Unger-Wallace, E., Sander, J.D., Muller-Lerch, F., Fu, F., Pearlberg, J., Gobel, C., Dassie, J.P., Pruett-Miller, S.M., Porteus, M.H., Sgroi, D.C., Iafrate, A.J., Dobbs, D., McCray, P.B., Jr., Cathomen, T., Voytas, D.F., and Joung, J.K. (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell. 31, 294–301.

    Article  PubMed  CAS  Google Scholar 

  5. Lombardo, A., Genovese, P., Beausejour, C.M., Colleoni, S., Lee, Y.L., Kim, K.A., Ando, D., Urnov, F.D., Galli, C., Gregory, P.D., Holmes, M.C., and Naldini, L. (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. 25, 1298–1306.

    Article  PubMed  CAS  Google Scholar 

  6. Perez, E.E., Wang, J., Miller, J.C., Jouvenot, Y., Kim, K.A., Liu, O., Wang, N., Lee, G., Bartsevich, V.V., Lee, Y.L., Guschin, D.Y., Rupniewski, I., Waite, A.J., Carpenito, C., Carroll, R.G., Orange, J.S., Urnov, F.D., Rebar, E.J., Ando, D., Gregory, P.D., Riley, J.L., Holmes, M.C., and June, C.H. (2008) Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. 26, 808–816.

    Article  PubMed  CAS  Google Scholar 

  7. Doyon, Y., McCammon, J.M., Miller, J.C., Faraji, F., Ngo, C., Katibah, G.E., Amora, R., Hocking, T.D., Zhang, L., Rebar, E.J., Gregory, P.D., Urnov, F.D., and Amacher, S.L. (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol. 26, 702–708.

    Article  PubMed  CAS  Google Scholar 

  8. Foley, J.E., Yeh, J.R., Maeder, M.L., Reyon, D., Sander, J.D., Peterson, R.T., and Joung, J.K. (2009) Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN). PLoS One. 4, e4348.

    Article  PubMed  Google Scholar 

  9. Meng, X., Noyes, M.B., Zhu, L.J., Lawson, N.D., and Wolfe, S.A. (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol. 26, 695–701.

    Article  PubMed  CAS  Google Scholar 

  10. Morton, J., Davis, M.W., Jorgensen, E.M., and Carroll, D. (2006) Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc Natl Acad Sci USA. 103, 16370–16375.

    Article  PubMed  CAS  Google Scholar 

  11. Bibikova, M., Beumer, K., Trautman, J.K., and Carroll, D. (2003) Enhancing gene targeting with designed zinc finger nucleases. Science. 300, 764.

    Article  PubMed  CAS  Google Scholar 

  12. Kim, Y.G., Cha, J., and Chandrasegaran, S. (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA. 93, 1156–1160.

    Article  PubMed  CAS  Google Scholar 

  13. Elrod-Erickson, M., Rould, M.A., Nekludova, L., and Pabo, C.O. (1996) Zif268 protein-DNA complex refined at 1.6 A: a model system for understanding zinc finger-DNA interactions. Structure. 4, 1171–1180.

    Article  PubMed  CAS  Google Scholar 

  14. Pavletich, N.P. and Pabo, C.O. (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. 252, 809–817.

    Article  PubMed  CAS  Google Scholar 

  15. Dreier, B., Segal, D.J., and Barbas, C.F., 3rd (2000) Insights into the molecular recognition of the 5ʹ-GNN-3ʹ family of DNA sequences by zinc finger domains. J Mol Biol. 303, 489–502.

    Article  PubMed  CAS  Google Scholar 

  16. Beerli, R.R. and Barbas, C.F., 3rd (2002) Engineering polydactyl zinc-finger transcription factors. Nat Biotechnol. 20, 135–141.

    Article  PubMed  CAS  Google Scholar 

  17. Bibikova, M., Carroll, D., Segal, D.J., Trautman, J.K., Smith, J., Kim, Y.G., and Chandrasegaran, S. (2001) Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol. 21, 289–297.

    Article  PubMed  CAS  Google Scholar 

  18. Smith, J., Bibikova, M., Whitby, F.G., Reddy, A.R., Chandrasegaran, S., and Carroll, D. (2000) Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 28, 3361–3369.

    Article  PubMed  CAS  Google Scholar 

  19. Miller, J.C., Holmes, M.C., Wang, J., Guschin, D.Y., Lee, Y.L., Rupniewski, I., Beausejour, C.M., Waite, A.J., Wang, N.S., Kim, K.A., Gregory, P.D., Pabo, C.O., and Rebar, E.J. (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol. 25, 778–785.

    Article  PubMed  CAS  Google Scholar 

  20. Szczepek, M., Brondani, V., Buchel, J., Serrano, L., Segal, D.J., and Cathomen, T. (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol. 25, 786–793.

    Article  PubMed  CAS  Google Scholar 

  21. Alwin, S., Gere, M.B., Guhl, E., Effertz, K., Barbas, C.F., 3rd, Segal, D.J., Weitzman, M.D., and Cathomen, T. (2005) Custom zinc-finger nucleases for use in human cells. Mol Ther. 12, 610–617.

    Article  PubMed  CAS  Google Scholar 

  22. Cornu, T.I., Thibodeau-Beganny, S., Guhl, E., Alwin, S., Eichtinger, M., Joung, J.K., and Cathomen, T. (2008) DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther. 16, 352–358.

    Article  PubMed  CAS  Google Scholar 

  23. Handel, E.M., Alwin, S., and Cathomen, T. (2009) Expanding or restricting the target site repertoire of zinc-finger nucleases: the inter-domain linker as a major determinant of target site selectivity. Mol Ther. 17, 104–111.

    Article  PubMed  Google Scholar 

  24. Isalan, M., Choo, Y., and Klug, A. (1997) Synergy between adjacent zinc fingers in sequence-specific DNA recognition. Proc Natl Acad Sci USA. 94, 5617–5621.

    Article  PubMed  CAS  Google Scholar 

  25. Mandell, J.G. and Barbas, C.F., 3rd (2006) Zinc finger tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res. 34, W516–W523.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Anton McCaffrey and Thomas J. Cradick for sharing their know-how on ZFN in vitro cleavage reactions and Tatjana Cornu for carefully reading this manuscript. This chapter is based on work supported by grant LSHB-CT2006-037783 ZNIP of the European Commission’s 6th Framework Programme.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cathomen, T., Şöllü, C. (2010). In Vitro Assessment of Zinc Finger Nuclease Activity. In: Mackay, J., Segal, D. (eds) Engineered Zinc Finger Proteins. Methods in Molecular Biology, vol 649. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-753-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-753-2_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-752-5

  • Online ISBN: 978-1-60761-753-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics