Measuring APP Carboxy-Terminal Fragments

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 670)

Abstract

The accumulation of the amyloid-β (Aβ) peptide in the form of insoluble fibrillar deposits and soluble oligomeric aggregates is widely believed to play a causal role in Alzheimer’s disease (AD). Proteolytic cleavage of APP by the β-site APP cleaving enzyme (BACE1) near the C-terminus results in the formation of the APP C-terminal fragment (CTF) C99, a substrate for subsequent cleavage by γ-secretase to generate Aβ. Alternatively, APP cleavage by α-secretase to generate the APP CTF C83 occurs within the Aβ region, precluding its formation. Therefore, modulation of β- and/or γ-secretase activity represents important therapeutic targets. Transgenic mice overexpressing human APP generate detectable levels of APP CTFs and Aβ. We have shown that highly sensitive and specific methods for determining levels of APP CTFs and Aβ are useful for understanding how genetic manipulation of APP processing impacts Aβ generation and accumulation.

Key words

Amyloid precursor protein APP C-terminal fragments Aβ Western blot Alzheimer’s disease BACE 

References

  1. 1.
    Haass, C. (2004) Take five – BACE and the gamma-secretase quartet conduct Alzheimer’s amyloid beta-peptide generation. EMBO J. 23, 483–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Tanzi, R., and Bertram, L. (2005) Twenty years of the Alzheimer’s disease amyloid hypothesis: A genetic perspective. Cell 120, 545–55.PubMedCrossRefGoogle Scholar
  3. 3.
    Selkoe, D. J. (2001) Alzheimer’s disease: Genes, proteins, and therapy. Physiol. Rev. 81, 741–66.PubMedGoogle Scholar
  4. 4.
    Lee, M. S., Kao, S. C., Lemere, C. A., Xia, W., Tseng, H. C., Zhou, Y., Neve, R., Ahlijanian, M. K., and Tsai, L. H. (2003) APP processing is regulated by cytoplasmic phosphorylation. J. Cell Biol. 163, 83–95.PubMedCrossRefGoogle Scholar
  5. 5.
    Lee, E. B., Zhang, B., Liu, K., Greenbaum, E. A., Doms, R. W., Trojanowski, J. Q., and Lee, V. M. (2005) BACE overexpression alters the subcellular processing of APP and inhibits Aβ deposition in vivo. J. Cell Biol. 168, 291–302.PubMedCrossRefGoogle Scholar
  6. 6.
    Abramowski, D., Wiederhold, K. H., Furrer, U., Jaton, A. L., Neuenschwander, A., Runser, M. J., Danner, S., Reichwald, J., Ammaturo, D., Staab, D., Stoeckli, M., Rueeger, H., Neumann, U., and Staufenbiel, M. (2008) Dynamics of Aβ turnover and deposition in different APP transgenic mouse models following gamma-secretase inhibition. J. Pharmacol. Exp. Ther 327, 411–24.Google Scholar
  7. 7.
    Lim, G. P., Calon, F., Morihara, T., Yang, F., Teter, B., Ubeda, O., Salem, N., Jr., Frautschy, S. A., and Cole, G. M. (2005) A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J. Neurosci. 25, 3032–40.PubMedCrossRefGoogle Scholar
  8. 8.
    Sano, Y., Syuzo-Takabatake, A., Nakaya, T., Saito, Y., Tomita, S., Itohara, S., and Suzuki, T. (2006) Enhanced amyloidogenic metabolism of the amyloid beta-protein precursor in the X11L-deficient mouse brain. J. Biol. Chem. 281, 37853–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Mucke, L., Masliah, E., Yu, G.-Q., Mallory, M., Rockenstein, E. M., Tatsuno, G., Hu, K., Kholodenko, D., Johnson-Wood, K., and McConlogue, L. (2000) High-level neuronal expression of Aβ1–42 in wild-type human amyloid protein precursor transgenic mice: Synaptotoxicity without plaque formation. J. Neurosci. 20, 4050–58.PubMedGoogle Scholar
  10. 10.
    Rockenstein, E., Mante, M., Alford, M., Adame, A., Crews, L., Hashimoto, M., Esposito, L., Mucke, L., and Masliah, E. (2005) High β-Secretase activity elicits neurodegeneration in transgenic mice despite reductions in amyloid-β levels: Implications for the treatment of Alzheimer’s disease. J. Biol. Chem. 280, 32957–67.PubMedCrossRefGoogle Scholar
  11. 11.
    DeMattos, R. B., Bales, K. R., Cummins, D. J., Dodart, J.-C., Paul, S. M., and Holtzman, D. M. (2001) Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 98, 8850–55.PubMedCrossRefGoogle Scholar
  12. 12.
    Esposito, L., Gan, L., Yu, G.-Q., Essrich, C., and Mucke, L. (2004) Intracellulary generated Aβ counteracts the antiapoptotic function of its precursor protein and primes proapoptotic pathways for activation by other insults in neuroblastoma cells. J. Neurochem. 91, 1260–74.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2010

Authors and Affiliations

  1. 1.ProteoTech, IncKirklandUSA

Personalised recommendations