Electrogenic Bromosulfalein Transport in Isolated Membrane Vesicles: Implementation in Both Animal and Plant Preparations for the Study of Flavonoid Transporters

  • Sabina Passamonti
  • Federica Tramer
  • Elisa Petrussa
  • Enrico Braidot
  • Angelo Vianello
Part of the Methods in Molecular Biology book series (MIMB, volume 643)


Bromosulfalein is an organic anion dye used in the study of a variety of membrane carriers expressed in animal tissues and involved in transport of drugs and metabolites. The spectrophotometric assay of electrogenic bromosulfalein transport in membrane vesicles, isolated from various mammalian organs or tissues, enables to specifically measure the transport activity of bilitranslocase (TCDB 2.A.65.1.1). The latter is a bilirubin- and flavonoid-specific transporter expressed in rat liver, the organ where its function has been best characterized. The spectrophotometric assay of electrogenic bromosulfalein transport requires minimal volumes of membrane vesicles, is completed within 1 min, and, therefore, is a useful tool to screen the transporter spectrum of potential substrates, by testing them as reversible inhibitors of bromosulfalein transport kinetics. Furthermore, the assay enables to study the progress of time-dependent inactivation of bromosulfalein transport, caused by different protein-specific reagents, including specific anti-sequence antibodies. Inactivation can be retarded by the presence of substrates in a concentration-dependent manner, enabling to derive the dissociation constants of the transporter–substrate complex and thus to gain further insight into the transporter structure–function relationship. This assay, implemented in membrane vesicles isolated from plant organs, has paved the way to the discovery of homologues of bilitranslocase in plants.

Key words

Bromosulfalein, membrane transport flavonoids bilitranslocase enzyme kinetics enzyme inactivation rat liver rat kidney carnation petal grape berry 



We are grateful for the financial support granted by Regione Friuli Venezia Giulia (L.R. n. 26/2005, Progetto “Miglioramento Delle Produzioni Viti-Vinicole…”) and Fondazione Cassa di Risparmio di Trieste (Rif. 10.1424-2007.0128).


  1. 1.
    Rosenthal, S., and White, E. (1925) Clinical application of the sulfobromophthalein test for hepatic function. J. Am. Med. Assoc. 84, 1112–1114.CrossRefGoogle Scholar
  2. 2.
    Hacki, W., Bircher, J., and Preisig, R. (1976) A new look at the plasma disappearance of sulfobromophthalein (BSP): correlation with the BSP transport maximum and the hepatic plasma flow in man. J. Lab. Clin. Med. 88, 1019–1031.PubMedGoogle Scholar
  3. 3.
    Scharschmidt, B. F., Waggoner, J. G., and Berk, P. D. (1975) Hepatic organic anion uptake in the rat. J. Clin. Invest. 56, 1280–1292.PubMedCrossRefGoogle Scholar
  4. 4.
    Shibahara, S., Kitamuro, T., and Takahashi, K. (2002) Heme degradation and human disease: diversity is the soul of life. Antioxid. Redox Signal. 4, 593–602.PubMedCrossRefGoogle Scholar
  5. 5.
    van Montfoort, J. E., Hagenbuch, B., Groothuis, G. M., Koepsell, H., Meier, P. J., and Meijer, D. K. (2003) Drug uptake systems in liver and kidney. Curr. Drug Metab. 4, 185–211.PubMedCrossRefGoogle Scholar
  6. 6.
    Sottocasa, G. L., Baldini, G., Sandri, G., Lunazzi, G., and Tiribelli, C. (1982) Reconstitution in vitro of sulfobromophthalein transport by bilitranslocase. Biochim. Biophys. Acta 685, 123–128.PubMedCrossRefGoogle Scholar
  7. 7.
    Baldini, G., Passamonti, S., Lunazzi, G. C., Tiribelli, C., and Sottocasa, G. L. (1986) Cellular localization of sulfobromophthalein transport activity in rat liver. Biochim. Biophys. Acta 856, 1–10.PubMedCrossRefGoogle Scholar
  8. 8.
    Passamonti, S., and Sottocasa, G. L. (1988) The quinoid structure is the molecular requirement for recognition of phthaleins by the organic anion carrier at the sinusoidal plasma membrane level in the liver. Biochim. Biophys. Acta 943, 119–125.PubMedCrossRefGoogle Scholar
  9. 9.
    Karawajczyk, A., Drgan, V., Medic, N., Oboh, G., Passamonti, S., and Novic, M. (2007) Properties of flavonoids influencing the binding to bilitranslocase investigated by neural network modelling. Biochem. Pharmacol. 73, 308–320.PubMedCrossRefGoogle Scholar
  10. 10.
    Passamonti, S., Vrhovsek, U., and Mattivi, F. (2002) The interaction of anthocyanins with bilitranslocase. Biochem. Biophys. Res. Commun. 296, 631–636.PubMedCrossRefGoogle Scholar
  11. 11.
    Battiston, L., Passamonti, S., Macagno, A., and Sottocasa, G. L. (1998) The bilirubin-binding motif of bilitranslocase and its relation to conserved motifs in ancient biliproteins. Biochem. Biophys. Res. Commun. 247, 687–692.PubMedCrossRefGoogle Scholar
  12. 12.
    Passamonti, S., and Sottocasa, G.L. (2002) Bilitranslocase: structural and functional aspects of an organic anion carrier, in Recent Research Developments in Biochemistry, Pandalai, G. S., ed., Research Signpost, Kerala, pp. 371–391.Google Scholar
  13. 13.
    Passamonti, S., Cocolo, A., Braidot, E., Petrussa, E., Peresson, C., Medic, N., Macrì, F., and Vianello, A. (2005) Characterization of electrogenic bromosulfophthalein transport in carnation petal microsomes and its inhibition by antibodies against bilitranslocase. FEBS J. 272, 3282–3296.PubMedCrossRefGoogle Scholar
  14. 14.
    Braidot, E., Petrussa, E., Bertolini, A., Peresson, C., Ermacora, P., Loi, N., Terdoslavich, M., Passamonti, S., Macrì, F., and Vianello, A. (2008) Evidence for a putative flavonoid translocator similar to mammalian bilitranslocase in grape berries (Vitis vinifera L.) during ripening. Planta 228, 203–213.PubMedCrossRefGoogle Scholar
  15. 15.
    Tam, J. P. (1989) High-density multiple antigen-peptide system for preparation of antipeptide antibodies. Methods Enzymol. 168, 7–15.PubMedCrossRefGoogle Scholar
  16. 16.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  17. 17.
    Chance, B., and Scarpa, A. (1972) Acid-base indicator for the measurement of rapid changes in hydrogen ion concentration. Methods Enzymol. 24, 336–342.PubMedCrossRefGoogle Scholar
  18. 18.
    Passamonti, S., Battiston, L., and Sottocasa, G. L. (1998) Bilitranslocase can exist in two metastable forms with different affinities for the substrates–evidence from cysteine and arginine modification. Eur. J. Biochem. 253, 84–90.PubMedCrossRefGoogle Scholar
  19. 19.
    Passamonti, S., Terdoslavich, M., Margon, A., Cocolo, A., Medic, N., Micali, F., Decorti, G., and Franko, M. (2005) Uptake of bilirubin into HepG2 cells assayed by thermal lens spectroscopy. FEBS J. 272, 5522–5535.PubMedCrossRefGoogle Scholar
  20. 20.
    Vanzo, A., Terdoslavich, M., Brandoni, A., Torres, A. M., Vrhovsek, U., and Passamonti, S. (2008) Uptake of grape anthocyanins into the rat kidney and the involvement of bilitranslocase. Mol. Nutr. Food Res. 52, 1106–1116.PubMedCrossRefGoogle Scholar
  21. 21.
    Passamonti, S., Battiston, L., and Sottocasa, G. L. (1997) Arylsulfonylation of bilitranslocase in plasma membranes from rat liver enables to discriminate between natural and artificial substrates. Biochim. Biophys. Acta 1323, 130–136.PubMedCrossRefGoogle Scholar
  22. 22.
    Scrutton, M. C., and Utter, M. F. (1965) Pyruvate carboxylase. V. Interaction of the enzyme with adenosine triphosphate. J. Biol. Chem. 240, 3714–3723.PubMedGoogle Scholar
  23. 23.
    Kitz, R., and Wilson, I. B. (1962) Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. J. Biol. Chem. 237, 3245–3249.PubMedGoogle Scholar
  24. 24.
    Takahashi, K. (1968) The reaction of phenylglyoxal with arginine residues in proteins. J. Biol. Chem. 243, 6171–6179.PubMedGoogle Scholar
  25. 25.
    Antonijevic, B., and Stojiljkovic, M. P. (2007) Unequal efficacy of pyridinium oximes in acute organophosphate poisoning. Clin. Med. Res. 5, 71–82.PubMedCrossRefGoogle Scholar
  26. 26.
    Jocelyn, P. C. (1987) Spectrophotometric assay of thiols. Methods Enzymol. 143, 44–67.PubMedCrossRefGoogle Scholar
  27. 27.
    Eyer, P., Worek, F., Kiderlen, D., Sinko, G., Stuglin, A., Simeon-Rudolf, V., and Reiner, E. (2003) Molar absorption coefficients for the reduced Ellman reagent: reassessment. Anal. Biochem. 312, 224–227.PubMedCrossRefGoogle Scholar
  28. 28.
    Terrier, N., Sauvage, F. X., Ageorges, A., and Romieu, C. (2001) Changes in acidity and in proton transport at the tonoplast of grape berries during development. Planta 213, 20–28.PubMedCrossRefGoogle Scholar
  29. 29.
    Persico, M., and Sottocasa, G. L. (1987) Measurement of sulfobromophthalein uptake in isolated rat hepatocytes by a direct spectrophotometric method. Biochim. Biophys. Acta 930, 129–134.PubMedCrossRefGoogle Scholar
  30. 30.
    Stein, W. D. (1990) Channels, carriers, and pumps: an introduction to membrane transport. Academic Press, San Diego, USA.Google Scholar
  31. 31.
    Chance, B. (1972) Principles of differential spectrophotometry with special reference to the dual wavelength method. Methods Enzymol. 24, 322–335.PubMedCrossRefGoogle Scholar
  32. 32.
    Schmidt, W. (2004) A high performance micro-dual-wavelength-spectrophotometer (MDWS). J. Biochem. Biophys. Methods 58, 15–24.PubMedCrossRefGoogle Scholar
  33. 33.
    Passamonti, S., Battiston, L., and Sottocasa, G. L. (1990) Arginine residues are involved in the transport function of bilitranslocase. Biochim. Biophys. Acta 1025, 122–126.PubMedCrossRefGoogle Scholar
  34. 34.
    Passamonti, S., and Sottocasa, G. L. (1990) The sulfhydryl groups responsible for bilitranslocase transport activity respond to the interaction of the carrier with bilirubin and functional analogues. Biochim. Biophys. Acta 1021, 9–12.PubMedCrossRefGoogle Scholar
  35. 35.
    Passamonti, S., Battiston, L., and Sottocasa, G. L. (1999) On the mechanism of bilitranslocase transport inactivation by phenylmethylsulphonyl fluoride. Mol. Membr. Biol. 16, 167–172.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sabina Passamonti
    • 1
  • Federica Tramer
    • 1
  • Elisa Petrussa
    • 2
  • Enrico Braidot
    • 2
  • Angelo Vianello
    • 2
  1. 1.Department of Life SciencesUniversity of TriesteTriesteItaly
  2. 2.Department of Plant Biology and Protection, Section of Plant BiologyUdine UniversityUdineItaly

Personalised recommendations