Skip to main content

Genetic Approach to Study Lupus Glomerulonephritis

  • Protocol
  • First Online:
Autoimmunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 900))

Abstract

Genetic and environmental factors contribute in the pathogenesis of systemic lupus erythematosus (SLE). Lupus nephritis, the most common and severe manifestation of SLE, involves inflammation in the kidney leading to loss of renal function. However, it is not clear what controls the progression of lupus nephritis; this is an important research question, considering its implications in clinical treatment of lupus nephritis. Finding genes that underlie the development and progression of lupus nephritis will shed light on this question. NZM2328 is a spontaneous mouse model for SLE. Most NZM2328 female mice develop autoantibodies (e.g., antinuclear antibody and anti-dsDNA antibody), glomerulonephritis (GN), and severe proteinuria between 5 and 12 months of age. In contrast, C57L/J mice fail to exhibit similar signs of autoimmune disease. We used classical genetics to map and identify SLE genes in offspring generated by backcrossing C57L/J to NZM2328. Quantitative trait loci (QTL) controlling acute (Agnz1 and Agnz2) and chronic (Cgnz1) GN features were uncovered by the analysis. To verify the Cgnz1 and Agnz1 on distal mouse chromosome 1, we produced the NZM23238.C57Lc1 (Lc1) congenic strain, which replaced NZM2328 Cgnz1 and Agnz1 alleles with those derived from C57L/J. The development of acute GN and chronic GN was markedly reduced in Lc1 mice, confirming the linkage findings. Further mapping by the generation of intrachromosomal recombinants of NZM2328.Lc1 support the thesis that acute GN and chronic GN are under separate genetic control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cameron JS (1999) Lupus nephritis. J Am Soc Nephrol 10(2):413–424

    PubMed  Google Scholar 

  2. Houssiau FA, Vasconcelos C, D’Cruz D, Sebastiani GD, de Ramon GE et al (2004) Early response to immunosuppressive therapy predicts good renal outcome in lupus nephritis: lessons from long-term followup of patients in the euro-lupus nephritis trial. Arthritis Rheum 50(12):3934–3940

    Article  PubMed  Google Scholar 

  3. Deapen D, Escalante A, Weinrib L, Horwitz D, Bachman B et al (1992) A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum 35(3):311–318

    Article  PubMed  Google Scholar 

  4. Alarcon-Segovia D, Alarcon-Riquelme ME, Cardiel MH, Caeiro F, Massardo L et al (2005) Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis Rheum 52(4): 1138–1147

    Article  PubMed  Google Scholar 

  5. Deng Y, Tsao BP (2010) Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat Rev Rheumatol 6(12):683–692

    Article  PubMed  Google Scholar 

  6. Gualtierotti R, Biggioggero M, Penatti AE, Meroni PL (2010) Updating on the pathogenesis of systemic lupus erythematosus. Autoimmun Rev 10(1):3–7

    Article  PubMed  Google Scholar 

  7. Delgado-Vega A, Sanchez E, Lofgren S, Castillejo-Lopez C, Alarcon-Riquelme ME (2010) Recent findings on genetics of systemic autoimmune diseases. Curr Opin Immunol 22(6):698–705

    Article  PubMed  Google Scholar 

  8. Kaiser R, Criswell LA (2010) Genetics research in systemic lupus erythematosus for clinicians: methodology, progress, and controversies. Curr Opin Rheumatol 22(2):119–125

    Article  PubMed  Google Scholar 

  9. Borchers AT, Naguwa SM, Shoenfeld Y, Gershwin ME (2010) The geoepidemiology of systemic lupus erythematosus. Autoimmun Rev 9(5):A277–A287

    Article  PubMed  Google Scholar 

  10. Jorgensen TN, Gubbels MR, Kotzin BL (2004) New insights into disease pathogenesis from mouse lupus genetics. Curr Opin Immunol 16(6):787–793

    Article  PubMed  Google Scholar 

  11. Morel L (2010) Genetics of SLE: evidence from mouse models. Nat Rev Rheumatol 6(6): 348–357

    Article  PubMed  Google Scholar 

  12. Theofilopoulos AN, Dixon FJ (1985) Murine models of systemic lupus erythematosus. Adv Immunol 37:269–390

    Article  PubMed  Google Scholar 

  13. Borchers A, Ansari AA, Hsu T, Kono DH, Gershwin ME (2000) The pathogenesis of autoimmunity in New Zealand mice. Semin Arthritis Rheum 29(6):385–399

    Article  PubMed  Google Scholar 

  14. Andrews BS, Eisenberg RA, Theofilopoulos AN, Izui S, Wilson CB et al (1978) Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med 148(5):1198–1215

    Article  PubMed  Google Scholar 

  15. Rudofsky UH, Evans BD, Balaban SL, Mottironi VD, Gabrielsen AE (1993) Differences in expression of lupus nephritis in New Zealand mixed H-2z homozygous inbred strains of mice derived from New Zealand black and New Zealand white mice. Origins and initial characterization. Lab Invest 68(4):419–426

    PubMed  Google Scholar 

  16. Rudofsky UH, Lawrence DA (1999) New zealand mixed mice: a genetic systemic lupus erythematosus model for assessing environmental effects. Environ Health Perspect 107(Suppl 5): 713–721

    Article  PubMed  Google Scholar 

  17. Kono DH, Theofilopoulos AN (2006) Genetics of SLE in mice. Springer Semin Immunopathol 28(2):83–96

    Article  PubMed  Google Scholar 

  18. Theofilopoulos AN, Kono DH (2001) Genetics of systemic autoimmunity and glomerulonephritis in mouse models of lupus. Nephrol Dial Transplant 16(Suppl 6):65–67

    Article  PubMed  Google Scholar 

  19. Fairhurst AM, Wandstrat AE, Wakeland EK (2006) Systemic lupus erythematosus: multiple immunological phenotypes in a complex genetic disease. Adv Immunol 92:1–69

    Article  PubMed  Google Scholar 

  20. Waters ST, Fu SM, Gaskin F, Deshmukh US, Sung SS et al (2001) NZM2328: a new mouse model of systemic lupus erythematosus with unique genetic susceptibility loci. Clin Immunol 100(3):372–383

    Article  PubMed  Google Scholar 

  21. Waters ST, McDuffie M, Bagavant H, Deshmukh US, Gaskin F et al (2004) Breaking tolerance to double stranded DNA, nucleosome, and other nuclear antigens is not required for the pathogenesis of lupus glomerulonephritis. J Exp Med 199(2):255–264

    Article  PubMed  Google Scholar 

  22. Ge Y, Fu SM. MS in preparation. In press.

    Google Scholar 

  23. Bagavant H, Fu SM (2005) New insights from murine lupus: disassociation of autoimmunity and end organ damage and the role of T cells. Curr Opin Rheumatol 17(5):523–528

    Article  PubMed  Google Scholar 

  24. Ge Y, Jiang C, Gaskin F, Sung SJ, Bagavant H et al (2009) Pathogenesis of proliferative lupus nephritis: different genetic control for acute and chronic glomerulonephritis and new insight into the mechanism of immune complex mediated nephritis. Arthritis Rheum 60:2019

    Article  Google Scholar 

  25. Darvasi A (1998) Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet 18(1):19–24

    Article  PubMed  Google Scholar 

  26. Rodriguez MR, Lundgren A, Sabastian P, Li Q, Churchill G et al (2009) A Cmv2 QTL on chromosome X affects MCMV resistance in New Zealand male mice. Mamm Genome 20(7):414–423

    Article  PubMed  Google Scholar 

  27. Asif M, Rahman M, Mirza JI, Zafar Y (2008) High resolution metaphor agarose gel elecctrophoresis for genotyping with microsatellite markers. Pak J Agric Sci 45(1):75–79

    Google Scholar 

  28. Manly KF, Olson JM (1999) Overview of QTL mapping software and introduction to map manager QT. Mamm Genome 10(4):327–334

    Article  PubMed  Google Scholar 

  29. Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19(7):889–890

    Article  PubMed  Google Scholar 

  30. Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11(3):241–247

    Article  PubMed  Google Scholar 

  31. Morel L, Rudofsky UH, Longmate JA, Schiffenbauer J, Wakeland EK (1994) Polygenic control of susceptibility to murine systemic lupus erythematosus. Immunity 1(3):219–229

    Article  PubMed  Google Scholar 

  32. Drake CG, Rozzo SJ, Hirschfeld HF, Smarnworawong NP, Palmer E et al (1995) Analysis of the new zealand black contribution to lupus-like renal disease. Multiple genes that operate in a threshold manner. J Immunol 154(5):2441–2447

    PubMed  Google Scholar 

  33. Mohan C, Alas E, Morel L, Yang P, Wakeland EK (1998) Genetic dissection of SLE pathogenesis. Sle1 on murine chromosome 1 leads to a selective loss of tolerance to H2A/H2B/DNA subnucleosomes. J Clin Invest 101(6):1 362–1372

    PubMed  Google Scholar 

  34. Rozzo SJ, Allard JD, Choubey D, Vyse TJ, Izui S et al (2001) Evidence for an interferon-inducible gene, Ifi202, in the susceptibility to systemic lupus. Immunity 15(3):435–443

    Article  PubMed  Google Scholar 

  35. Morel L, Blenman KR, Croker BP, Wakeland EK (2001) The major murine systemic lupus erythematosus susceptibility locus, Sle1, is a cluster of functionally related genes. Proc Natl Acad Sci U S A 98(4):1787–1792

    Article  PubMed  Google Scholar 

  36. Heidari Y, Fossati-Jimack L, Carlucci F, Walport MJ, Cook HT et al (2009) A lupus-susceptibility C57BL/6 locus on chromosome 3 (Sle18) contributes to autoantibody production in 129 mice. Genes Immun 10(1):47–55

    Article  PubMed  Google Scholar 

  37. Wakeland E, Morel L, Achey K, Yui M, Longmate J (1997) Speed congenics: a classic technique in the fast lane (relatively speaking). Immunol Today 18(10):472–477

    Article  PubMed  Google Scholar 

  38. Scalzo AA, Brown MG, Chu DT, Heusel JW, Yokoyama WM et al (1999) Development of intra-natural killer complex (NKC) recombinant and congenic mouse strains for mapping and functional analysis of NK cell regulatory loci. Immunogenetics 49(3):238–241

    Article  PubMed  Google Scholar 

  39. Scalzo AA, Wheat R, Dubbelde C, Stone L, Clark P et al (2003) Molecular genetic characterization of the distal NKC recombination hotspot and putative murine CMV resistance control locus. Immunogenetics 55(6):370–378

    Article  PubMed  Google Scholar 

  40. Brown MG, Zhang J, Du Y, Stoll J, Yokoyama WM et al (1999) Localization on a physical map of the NKC-linked Cmv1 locus between Ly49b and the prp gene cluster on mouse chromosome 6. J Immunol 163(4):1991–1999

    PubMed  Google Scholar 

  41. Brown MG, Dokun AO, Heusel JW, Smith HR, Beckman DL et al (2001) Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292(5518): 934–937

    Article  PubMed  Google Scholar 

  42. Xie X, Stadnisky MD, Brown MG (2009) MHC class I dk locus and Ly49G2+ NK cells confer H-2k resistance to murine cytomegalovirus. J Immunol 182(11):7163–7171

    Article  PubMed  Google Scholar 

  43. Xie X, Stadnisky MD, Coats ER, Ahmed Rahim MM, Lundgren A et al (2010) MHC class I D(k) expression in hematopoietic and nonhematopoietic cells confers natural killer cell resistance to murine cytomegalovirus. Proc Natl Acad Sci U S A 107(19): 8754–8759

    Article  PubMed  Google Scholar 

  44. Rodriguez M, Sabastian P, Clark P, Brown MG (2004) Cmv1-independent antiviral role of NK cells revealed in murine cytomegalovirus-infected New Zealand white mice. J Immunol 173(10):6312–6318

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants AI050072 (M.G.B.), P50-AR04522, R01-AR047988, R01-AR049449 and R01-AI079621 (S.M.F.) and a grant from Alliance for Lupus Research (S.M.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Man Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ge, Y., Brown, M.G., Wang, H., Fu, S.M. (2012). Genetic Approach to Study Lupus Glomerulonephritis. In: Perl, A. (eds) Autoimmunity. Methods in Molecular Biology, vol 900. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-720-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-720-4_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-719-8

  • Online ISBN: 978-1-60761-720-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics