Skip to main content

Pathogenesis and Spectrum of Autoimmunity

  • Protocol
  • First Online:
Autoimmunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 900))

Abstract

The immune system specifically recognizes and eliminates foreign antigens and, thus, protects integrity of the host. During maturation of the immune system, tolerance mechanisms develop that prevent or inhibit potentially harmful reactivities to self-antigens. Autoreactive B and T cells that are generated during immune responses are eliminated by apoptosis in the thymus, lymph nodes, or peripheral circulation or actively suppressed by regulatory T cells. However, autoreactive cells may survive due to failure of apoptosis or molecular mimicry, i.e., presentation and recognition of cryptic epitopes of self-antigens, or aberrant lymphokine production. Preservation of the host requires the development of immune responses to foreign antigen and tolerance to self-antigens. Autoimmunity results from a breakdown of tolerance to self-antigens through an interplay of genetic and environmental factors.

One of the basic functions of the immune system is to specifically recognize and eliminate foreign antigens and, thus, protect integrity of the host. Through rearrangements and somatic mutations of various gene segments encoding T and B cell receptors and antibody molecules, the immune system acquires tremendous diversity. During maturation of the immune system, recognition of self-antigens plays an important role in shaping the repertoires of immune receptors. Tolerance mechanisms develop that prevent or inhibit potentially harmful reactivities to self-antigens. These self-defense mechanisms are mediated on the levels of central and peripheral tolerance, i.e., autoreactive T cells are either eliminated by apoptosis in the thymus, lymph nodes, or peripheral circulation or actively suppressed by regulatory T cells. Likewise, autoreactive B cells are eliminated in the bone marrow or peripheral lymphoid organs. However, immune responses triggered by foreign antigens may be sustained by molecular mimicry, i.e., presentation and recognition of cryptic epitopes of self-antigens. Further downstream, execution of immune responses depends on the functioning of intracellular signaling networks and the cooperation of many cell types communicating via surface receptors, cytokines, chemokines, and antibody molecules. Therefore, autoimmunity represents the end result of the breakdown of one or multiple basic mechanisms of immune tolerance (Table 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oldstone MBA (1987) Molecular mimicry and autoimmune disease. Cell 50:819–820

    Article  PubMed  CAS  Google Scholar 

  2. Nagata S (2010) Apoptosis and autoimmune diseases. Ann N Y Acad Sci 1209:10–16

    Article  PubMed  CAS  Google Scholar 

  3. Waterman PM, Cambier JC (2010) The conundrum of inhibitory signaling by ITAM-containing immunoreceptors: potential molecular mechanisms. FEBS Lett 584:4878–4882

    Article  PubMed  CAS  Google Scholar 

  4. Sakaguchi S (2011) Regulatory T cells: history and perspective. Methods Mol Biol 707:3–17

    Article  PubMed  CAS  Google Scholar 

  5. Silverman GJ (2011) Regulatory natural autoantibodies to apoptotic cells: pallbearers and protectors. Arthritis Rheum 63:597–602

    Article  PubMed  CAS  Google Scholar 

  6. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324

    Article  PubMed  CAS  Google Scholar 

  7. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, Schaller JG, Talal N, Winchester RJ (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25:1271–1277

    Article  PubMed  CAS  Google Scholar 

  8. Perl A (2010) Systems biology of lupus: mapping the impact of genomic and environmental factors on gene expression signatures, cellular signaling, metabolic pathways, hormonal and cytokine imbalance, and selecting targets for treatment. Autoimmunity 43:32–47

    Article  PubMed  CAS  Google Scholar 

  9. Silverstein AM, Rose NR (1997) On the mystique of the immunological self [review] [91 refs]. Immunol Rev 159:197–206, discussion

    Article  PubMed  CAS  Google Scholar 

  10. Agnello V (1986) Lupus diseases associated with hereditary and acquired deficiencies of complement. Springer Semin Immunpathol 9:183–219

    Google Scholar 

  11. Arnett FC, Reveille JD (1992) Genetics of systemic lupus erythematosus. Rheum Dis Clin North Am 18:865–892

    PubMed  CAS  Google Scholar 

  12. Ehrlich P (1900) On immunity with special reference to cell life. Proc R Soc Lond (Biol) 66:428–448

    Google Scholar 

  13. Rose NR, Witebsky E (1956) Studies on organ specificity. V. Changes in the thyroid glands of rabbits following active immunization with rabbit thyroid extracts. J Immunol 76:417–427

    PubMed  CAS  Google Scholar 

  14. Steinberg AD, Gourley MF, Klinman DM, Tsokos GC, Scott DE, Krieg AM (1991) Systemic lupus erythematosus. Ann Intern Med 115:548–559

    PubMed  CAS  Google Scholar 

  15. Samter M, Talmage DW, Frank MM, Austen KF, Claman HN (1988) Immunological diseases. Little Brown, Boston, MA

    Google Scholar 

  16. Brand DD, Kang AH, Rosloniec EF (2004) The mouse model of collagen-induced arthritis. In: Perl A (ed) Autoimmunity: methods and protocols, 102nd edn. Humana, Totowa, NJ, pp 295–312

    Google Scholar 

  17. Abu-Hamad S, Sivan S, Shoshan-Barmatz V (2006) The expression level of the voltage-dependent anion channel controls life and death of the cell. PNAS 103:5787–5792

    Article  PubMed  CAS  Google Scholar 

  18. Liu E, Yu L, Moriyama H, Eisenbarth GS (2004) Animal models of insulin-dependent diabetes, 102 edn. In: Perl A (ed) Humana, Totowa, NJ. pp 195–212

    Google Scholar 

  19. Slavin A, Kelly-Modis L, Labadia M, Ryan K, Brown ML (2010) Pathogenic mechanisms and experimental models of multiple sclerosis. Autoimmunity 43:504–513

    Article  PubMed  CAS  Google Scholar 

  20. Mageed RA, Isenberg DA (2002) Tumour necrosis factor alpha in systemic lupus erythematosus and anti-DNA autoantibody production [review] [45 refs]. Lupus 11:850–855

    Article  PubMed  CAS  Google Scholar 

  21. Wang J, Asensio VC, Campbell IL (2002) Cytokines and chemokines as mediators of protection and injury in the central nervous system assessed in transgenic mice. [Review] [146 refs]. Curr Top Microbiol Immunol 265:23–48

    PubMed  CAS  Google Scholar 

  22. Ghezzi P, Mennini T (2001) Tumor necrosis factor and motoneuronal degeneration: an open problem [Review] [51 refs]. Neuroimmunomodulation 9:178–182

    Article  PubMed  CAS  Google Scholar 

  23. Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middleton LA, Lin AY, Strober W, Lenardo MJ, Puck JM (1995) Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81:935–946

    Article  PubMed  CAS  Google Scholar 

  24. Drappa J, Vaishnaw AK, Sullivan KE, Chu J-L, Elkon KB (1996) Fas gene mutations in the Canale-Smith syndrome, an inherited lymphoproliferative disorder associated with autoimmunity. N Engl J Med 335:1643–1649

    Article  PubMed  CAS  Google Scholar 

  25. Wang J, Zheng L, Lobito A, Chan FK, Dale J, Sneller M, Yao X, Puck JM, Straus SE, Lenardo MJ (1999) (1999) Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 98:47–58

    Article  PubMed  CAS  Google Scholar 

  26. Cohen PL, Eisenberg RA (1991) Lpr and gld: Single gene models of systemic autoimmunity and lymphoproliferative disease. Annu Rev Immunol 9:243–269

    Article  PubMed  CAS  Google Scholar 

  27. Clerici M, Fusi ML, Caputo D, Guerini FR, Trabattoni D, Salvaggio A, Cazzullo CL, Arienti D, Villa ML, Urnovitz HB, Ferrante P (1999) Immune responses to antigens of human endogenous retroviruses in patients with acute or stable multiple sclerosis. J Neuroimmunol 99:173–182

    Article  PubMed  CAS  Google Scholar 

  28. Georgescu L, Vakkalanka RK, Elkon KB, Crow MK (1997) Interleukin-10 promotes activation-induced cell death of SLE lymphocytes mediated by Fas ligand. J Clin Invest 100:2622–2633

    Article  PubMed  CAS  Google Scholar 

  29. Wang JH, Pappas D, De Jager PL, Pelletier D, de Bakker PI, Kappos L, Polman CH, Chibnik LB, Hafler DA, Matthews PM, Hauser SL, Baranzini SE, Oksenberg JR (2011) Modeling the cumulative genetic risk for multiple sclerosis from genome-wide association data. Genome Med 3:3

    Article  PubMed  Google Scholar 

  30. Steck AK, Rewers MJ (2011) Genetics of type 1 diabetes. Clin Chem 57:176–185

    Article  PubMed  CAS  Google Scholar 

  31. Crow MK, Kirou KA (2004) Interferon-alpha in systemic lupus erythematosus. [Review] [74 refs]. Curr Opin Rheumatol 16:541–547

    Article  PubMed  CAS  Google Scholar 

  32. Perl A (1999) Mechanisms of viral pathogenesis in rheumatic diseases (Invited Review). Ann Rheum Dis 58:454–461

    Article  PubMed  CAS  Google Scholar 

  33. Lai Z-W, Hanczko R, Bonilla E, Caza TN, Clair B, Bartos A, Miklossy G, Jimah J, Doherty E, Tily H, Francis L, Garcia R, Dawood M, Yu J, Ramos I, Coman I, Faraone SV, Phillips PE, Perl A (2012) N-acetylcysteine reduces disease activity by blocking mTOR in T cells of lupus patients. Arth Rheum Accepted Article’, DOI 10.1002/art.34502

    Article  PubMed  CAS  Google Scholar 

  34. Fernandez D, Bonilla E, Mirza N, Perl A (2006) Rapamycin reduces disease activity and normalizes T-cell activation-induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheum 54:2983–2988

    Article  PubMed  CAS  Google Scholar 

  35. Warner LM, Adams LM, Sehgal SN (1994) Rapamycin prolongs survival and arrests pathophysiologic changes in murine systemic lupus erythematosus. Arthritis Rheum 37:289–297

    Article  PubMed  CAS  Google Scholar 

  36. Wu T, Qin X, Kurepa Z, Kumar KR, Liu K, Kanta H, Zhou XJ, Satterthwaite AB, Davis LS, Mohan C (2007) Shared signaling networks active in B cells isolated from genetically distinct mouse models of lupus [Article]. J Clin Invest 117:2186–2196

    Article  PubMed  CAS  Google Scholar 

  37. Esposito M, Ruffini F, Bellone M, Gagliani N, Battaglia M, Martino G, Furlan R (2010) Rapamycin inhibits relapsing experimental autoimmune encephalomyelitis by both effector and regulatory T cells modulation. J Neuroimmunol 220:52–63

    Article  PubMed  CAS  Google Scholar 

  38. Donia M, Mangano K, Amoroso A, Mazzarino MC, Imbesi R, Castrogiovanni P, Coco M, Meroni P, Nicoletti F (2009) Treatment with rapamycin ameliorates clinical and histological signs of protracted relapsing experimental allergic encephalomyelitis in Dark Agouti rats and induces expansion of peripheral CD4  +  CD25  +  Foxp3+ regulatory T cells. J Autoimmun 33:135–140

    Article  PubMed  CAS  Google Scholar 

  39. Tian J, Lehmann PV, Kaufman DL (1994) T cell cross-reactivity between Coxsackievirus and glutamate decarboxylase is associated with a murine diabetes susceptibility allele. J Exp Med 180:1979–1984

    Article  PubMed  CAS  Google Scholar 

  40. Baum H, Davies H, Peakman M (1996) Molecular mimicry in the MHC: hidden clues to autoimmunity? Immunol Today 17:64–70

    Article  PubMed  CAS  Google Scholar 

  41. Richardson BC, Strahler JR, Pivirotto TS, Quddus J, Bayliss GE, Gross LA, O’Rourke KS, Powers D, Hanash SM, Johnson MA (1992) Phenotypic and functional similarities between 5-azacytidine-treated T cells and a T-cell subset in patients with active systemic lupus erythematosus. Arthritis Rheum 35:647–662

    Article  PubMed  CAS  Google Scholar 

  42. Reap EA, Roof K, Maynor K, Borrero M, Booker J, Cohen PL (1997) Radiation and stress-induced apoptosis: a role for Fas/Fas ligand interactions. Proc Natl Acad Sci U S A 94:5750–5755

    Article  PubMed  CAS  Google Scholar 

  43. Vladutiu AO, Rose NR (1971) Autoimmune murine thyroiditis relation to histocompatibility (H-2) type. Science 174:1137–1139

    Article  PubMed  CAS  Google Scholar 

  44. Lockshin MD (2002) Sex ratio and rheumatic disease: excerpts from an Institute of Medicine report [Review] [30 refs]. Lupus 11:662–666

    Article  PubMed  CAS  Google Scholar 

  45. Llorente L, Zou W, Levy Y, Richaud-Patin Y, Wijdenes J, Alcocer-Varela J, Morel-Fourrier B, Brouet JC, Alarcon-Segovia D, Galanaud P (1995) Role of interleukin 10 in the B lymphocyte hyperactivity and autoantibody production of human systemic lupus erythematosus. J Exp Med 181:839–844

    Article  PubMed  CAS  Google Scholar 

  46. Gergely PJ, Niland B, Gonchoroff N, Pullmann R Jr, Phillips PE, Perl A (2002) Persistent mitochondrial hyperpolarization, increased reactive oxygen intermediate production, and cytoplasmic alkalinization characterize altered IL-10 signaling in patients with systemic lupus erythematosus. J Immunol 169:1092–1101

    PubMed  CAS  Google Scholar 

  47. Wong HK, Kammer GM, Dennis G, Tsokos GC (1999) Abnormal NF-kappa B activity in T lymphocytes from patients with systemic lupus erythematosus is associated with decreased p65-RelA protein expression. J Immunol 163:1682–1689

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras Perl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Perl, A. (2012). Pathogenesis and Spectrum of Autoimmunity. In: Perl, A. (eds) Autoimmunity. Methods in Molecular Biology, vol 900. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-720-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-720-4_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-719-8

  • Online ISBN: 978-1-60761-720-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics